
Lecture 25: Assembly
CSE 374: Intermediate
Programming Concepts and
Tools

1

http://pollev.com/cse374

Administrivia

▪HW 4 posted -> Extra credit due date Thursday Dec 3rd

▪HW 5 (final HW) coming later today

▪HW 6 extra credit releasing next week

▪2 more exercises coming – 1 later today, 1 next week

▪Final review assignment will release last week of quarter

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Decriminalizing Our College Campuses
Date: Thursday, December 3, 2020

Time: 6-8 pm
Location: Zoom link will be emailed to everyone who RSVPs
RSVP link: https://forms.gle/5FSZQsFTgAaYKUh56

https://forms.gle/5FSZQsFTgAaYKUh56

Review: General Memory Layout

▪Stack
-Local variables (procedure context)

▪Heap
-Dynamically allocated as needed
-malloc(), calloc(), new, …

▪Statically allocated Data
-Read/write: global variables (Static Data)
-Read-only: string literals (Literals)

▪Code/Instructions
-Executable machine instructions
-Read-only

3CSE 374 AU 20 - KASEY CHAMPION

Where does everything go?

4CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

Hardware Software Interface

5CSE 374 AU 20 - KASEY CHAMPION

From Human to Computer

▪C /C++ is translated directly into assembly by compiler
- Other languages may be translated into another form

- Java is translated into an assembly-like form, which is then run by the Java interpreter/runtime

- The Java runtime is executing assembly instructions!

- Some languages are directly interpreted without being translated into another form
- Most Bash implementations will directly interpret the commands without compiling

- Python can do either. It can be used as an interpreter or compile scripts

▪Assembler translates assembly into machine code

6CSE 374 AU 20 - KASEY CHAMPION

#include <stdio.h>

int main()
{
 char name[20];
 …
 return 0;
}

push ebp
mov ebp, esp
sub esp,
0C0h

83 ec 08
83 e4 f0
b8 00 00 00 00
83 c0 0f

Computer Architecture

▪Instruction Set Architecture (ISA): The ”programming language” of the processor,
the syntax and language of how to give commands to the processor.
-There are a set of ISAs that are supported by a larger collection of microarchitectures
-Ex: x86, ARM ISA, TI DSPs ISA

The ISA defines:
-The system’s state (e.g. registers, memory, program counter)
-The instructions the CPU can execute

-The effect that each of these instructions will have on the system state

▪Microarchitecture: The way a specific processor executes a given ISA based on the
processor’s design.
-The Microarchitecture defines how the data (data path) moves through the parts of the processor

(control path), often represented as a data flow diagram.
-microarchitecture dictates the flow of instructions through items within the processor such as logic

gates, registers, Arithmetic Logic Units (ALUs)

7CSE 374 AU 20 - KASEY CHAMPION

Mainstream ISAs

8CSE 374 AU 20 - KASEY CHAMPION

So… who writes assembly?

▪Chances are, you’ll never write a program in assembly!
- BUT understanding assembly is the key to the machine-level execution model.

▪Some use cases for assembly:
-When working in embedded where you can’t trust the compiler to reduce program size as efficiently as

possible

-When special purpose subroutines are required that are not possible in higher level languages

-Behavior of programs in the presence of bugs
- When high-level language model breaks down

-Tuning program performance

-Implementing systems software

-Fighting malicious software
- Distributed software is in binary form

9CSE 374 AU 20 - KASEY CHAMPION

Assembly Programmer’s View

▪Programmer-visible state
-PC: the Program Counter (%rip in x86-64)

- Address of next instruction

-Named registers
- Heavily used program data

-Condition codes
- Store status information about most recent arithmetic operation

- Used for conditional branching

10CSE 374 AU 20 - KASEY CHAMPION

Registers

▪A location in the CPU that stores a small amount of data, which can be accessed very quickly (once
every clock cycle)

▪Registers have names, not addresses
-In assembly, they start with % (e.g. %rsi)

▪Registers are at the heart of assembly programming
-They are a precious commodity in all architectures, but especially x86

11CSE 374 AU 20 - KASEY CHAMPION

Memory

▪Addresses (EX: 0x7FFFD024C3DC)

▪Big ~ 8 GiB

▪Slow ~50-100 ns

▪Dynamic - Can “grow” as needed
 while program runs

Registers

▪Names (EX: %rdi)

▪Small - (16 x 8 B) = 128 B

▪Fast - sub-nanosecond timescale

▪Static - fixed number in hardware

Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

▪Transfer data between memory and register
-Load data from memory into register

- %reg = Mem[address]

-Store register data into memory
- Mem[address] = %reg

▪Perform arithmetic operation on register or
memory data
-c = a + b; z = x << y; i = h & g;

▪Control flow: what instruction to execute next
-Unconditional jumps to/from procedures

-Conditional branches

12CSE 374 AU 20 - KASEY CHAMPION

Items in Assembly fall into one of 3 operand
categories:

▪Immediate: Constant integer data
-Examples: $0x400, $-533

-Like C literal, but prefixed with ‘$’

-Encoded with 1, 2, 4, or 8 bytes

▪Register: 1 of 16 integer registers
-Examples: %rax, %r13

▪Memory: Consecutive bytes of memory at
a computed address
-Simplest example: (%rax)

Example: Moving Data

▪General form: mov_ source, destination
-Missing letter (_) specifies size of operands

-Lots of these in typical code

Examples:

▪movb src, dst
-Move 1-byte “byte”

▪movw src, dst
-Move 2-byte “word”

▪movl src, dst
-Move 4-byte “long word”

▪movq src, dst
-Move 8-byte “quad word”

13CSE 374 AU 20 - KASEY CHAMPION

movq

movq $0x4, %rax rax = 4;

movq $-147, (%rax) *rax = -147;

movq %rax, %rdx rdx = rax;

movq %rax, (%rdx) *rdx = rax;

movq (%rax), %rdx rdx = *rax;

Assume we have two variables called rax and rdx.

Which assembly instruction does *rdx = rax?

movq %rdx, %rax

movq (%rdx), %rax

movq %rax, (%rdx)

movq (%rax), %rdx

Arithmetic Operation Instructions

▪Binary (two-operand) Instructions:
-Beware argument

order!

-How do you
implement

▪“r3 = r1 + r2”?

14CSE 374 AU 20 - KASEY CHAMPION

 addq src, dst

 subq src, dst
imulq src, dst

 shrq src, dst
 shlq src, dst salq

 xorq src, dst
 andq src, dst
 orq src, dst

Example: Arithmetic Operations

15CSE 374 AU 20 - KASEY CHAMPION

%rdi x

%rsi y

%rax

Example: swap()

16CSE 374 AU 20 - KASEY CHAMPION

Example: swap()

17CSE 374 AU 20 - KASEY CHAMPION

123

456

Example: swap()

18CSE 374 AU 20 - KASEY CHAMPION

123

456

456

123

Where does everything go?

19CSE 374 AU 20 - KASEY CHAMPION

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

Buffer Overflow

▪A buffer is an array used to temporarily store data
-You’ve probably seen “video buffering…”
-The video is being written into a buffer before being played

-Buffers can also store user input

▪C does not check array bounds
-Many Unix/Linux/C functions don’t check argument sizes

-Allows overflowing (writing past the end) of buffers (arrays)

▪“Buffer Overflow” = Writing past the end of an array

▪Characteristics of the traditional Linux memory layout provide opportunities for
malicious programs
-Stack grows “backwards” in memory

-Data and instructions both stored in the same memory

20CSE 374 AU 20 - KASEY CHAMPION

Buffer Overflow

▪Stack grows down towards lower addresses

▪Buffer grows up towards higher addresses

▪If we write past the end of the array, we overwrite data on the stack!

21CSE 374 AU 20 - KASEY CHAMPION

 Enter input: hello Enter input: helloabcdef

What happens when there is an overflow?

▪Buffer overflows on the stack
can overwrite “interesting”
data
-Attackers just choose the right inputs

▪Simplest form (sometimes
called “stack smashing”)
-Unchecked length on string input into

bounded array causes overwriting of
stack data

-Try to change the return address of the
current procedure

▪Why is this a big deal?
-It was the #1 technical cause of security

vulnerabilities
- #1 overall cause is social engineering / user

ignorance

22CSE 374 AU 20 - KASEY CHAMPION

 Enter input: helloabcdef

We’ve lost our way!
Lost address of function pointer
telling us which instruction to
return to

Malicious Buffer Overflow – Code Injection

▪Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines
-Distressingly common in real programs

▪Input string contains byte
representation of executable code

▪Overwrite return address A with
address of buffer B

▪When bar() executes ret, will jump to
exploit code

23CSE 374 AU 20 - KASEY CHAMPIONhttps://www.gao.gov/assets/700/694913.pdf

void foo(){
 bar();
A:...
}

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

https://www.gao.gov/assets/700/694913.pdf

Examples

▪Original “Internet worm” (1988)
- Early versions of the finger server (fingerd) used gets() to

read the argument sent by the client: finger
droh@cs.cmu.edu

- Worm attacked fingerd server with phony argument:
- finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

- Robert Morris is now a professor at MIT, first person
convicted under the ‘86 Computer Fraud and Abuse Act

24CSE 374 AU 20 - KASEY CHAMPION

▪Heartbleed (2014, affected 17% of servers)
- Buffer over-read in OpenSSL

- “Heartbeat” packet
- Specifies length of message and server echoes it back

- Library just “trusted” this length

- Allowed attackers to read contents of memory anywhere they wanted

- Est. 17% of Internet affected

- Similar issue in Cloudbleed (2017)

Protect Your Code!

▪Employ system-level protections
-Code on the Stack is not executable

-Randomized Stack offsets

▪Avoid overflow vulnerabilities
-Use library routines that limit string lengths

-Use a language that makes them impossible

▪Have compiler use “stack canaries”
-place special value (“canary”) on stack just beyond

buffer

25CSE 374 AU 20 - KASEY CHAMPION

System Level Protections
▪Non-executable code segments

▪In traditional x86, can mark region of memory
as either “read-only” or “writeable”
- Can execute anything readable

▪x86-64 added explicit “execute” permission

▪Stack marked as non-executable
- Do NOT execute code in Stack, Static Data, or Heap regions
- Hardware support needed

▪Works well, but can’t always use it

▪Many embedded devices do not have this
protection
- Cars
- Smart homes
- Pacemakers

▪Some exploits still work!

26CSE 374 AU 20 - KASEY CHAMPION

▪Randomized stack offsets
-At start of program, allocate random amount of space

on stack

-Shifts stack addresses for entire program
- Addresses will vary from one run to another

-Makes it difficult for hacker to predict beginning of
inserted code

Avoid Overflow Vulnerabilities

▪Use library routines that limit string lengths
-fgets instead of gets (2nd argument to fgets sets limit)

-strncpy instead of strcpy

-Don’t use scanf with %s conversion specification
- Use fgets to read the string

- Or use %ns where n is a suitable integer

▪Alternatively, don’t use C - use a language that does array index bounds check
-Buffer overflow is impossible in Java

- ArrayIndexOutOfBoundsException

-Rust language was designed with security in mind
- Panics on index out of bounds, plus more protections

27CSE 374 AU 20 - KASEY CHAMPION

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 fgets(buf, 8, stdin);
 puts(buf);
}

Stack Canaries

▪Basic Idea: place special value (“canary”) on stack just beyond buffer
-Secret value that is randomized before main()

-Placed between buffer and return address

-Check for corruption before exiting function

▪GCC implementation
- -fstack-protector

28CSE 374 AU 20 - KASEY CHAMPION

unix>./buf
Enter string: 12345678
12345678

unix> ./buf
Enter string: 123456789
*** stack smashing detected ***

Questions

29CSE 374 AU 20 - KASEY CHAMPION

