- .
-1«?« ‘;\'é:; ) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #25
.‘v:-'..,x'

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 2 5 : Asse m b |y Programming Concepts and

Tools


http://pollev.com/cse374

Administrivia

*HW 4 posted -> Extra credit due date Thursday Dec 3rd
*HW 5 (final HW) coming later today

*HW 6 extra credit releasing next week

=2 more exercises coming - 1 later today, 1 next week
=Final review assignment will release last week of quarter

=*End of quarter due date Wednesday December 16" @ 9pm

THANK YOU FOR YOUR
PATIENCE

Decriminalizing Our College Campuses
Date: Thursday, December 3, 2020

Time: 6-8 pm

Location: Zoom link will be emailed to everyone who RSVPs
RSVP link: https://forms.qle/SFSZQsFTgAaYKUh56



https://forms.gle/5FSZQsFTgAaYKUh56

Review: General Memory Layout

=Stack
Local variables (procedure context)

"Heap
Dynamically allocated as needed
malloc(), calloc(), new, ...

=Statically allocated Data
Read/write: global variables (Static Data)
Read-only: string literals (Literals)

=Code/Instructions
Executable machine instructions
Read-only

AN
1

Stack

\/

Heap

f_

Static Data

Literals

Instructions




Where does everything go?

char big array[1L<<24]; /* 16 MB */
char huge array[lL<<31l]; /* 2 GB */ \\\\\\\
int global = 0;
int useless () { return 0; }
int main ()
{
void *pl, *p2, *p3, *p4;
‘int local = 0:
pl = malloc(lL << 28); /* 256 MB */
p2 = malloc(l << 8); /* 256 B */’////
p3 = malloc (1L << 32),; /* 4 GB */
p4d = malloc(lL << 8); /* 256 B */
/* Some print statements */

Static Data

Literals

Instructions

CSE 374 AU 20 - KASEY CHAMPION

4



Hardware Software Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Different
or algorithms generate instructions implementations
Ty : Intel Pentium 4
i C Language !
: Program : R Intel Core 2
l | I
- GCC '\ x86-64 ! intel Core i7
e R N e
' | Program : AMD Opteron
, :
| . AMD Athlon
: Clang ™
: Your : R ;
\ | program : . ARMv& | ARM Cortex-A53
S ————E R '(AArch64/A64) |
"""""" Apple A7

CSE 374 AU 20 - KASEY CHAMPION 5



From Human to Computer

=C /C++ is translated directly into assembly by compiler

Other languages may be translated into another form

Java is translated into an assembly-like form, which is then run by the Java interpreter/runtime

The Java runtime is executing assembly instructions!

Some languages are directly interpreted without being translated into another form

Most Bash implementations will directly interpret the commands without compiling

Python can do either. It can be used as an interpreter or compile scripts

=Assembler translates assembly into machine code

C

#include <stdio.h>
int main ()
{

char name[20];

return 0O;

Assembly

Compiler =

push ebp
mov ebp, esp
sub esp,

Assembler -

uC0h

Machine Code

83 ec 08
83 ed f0
b8 00 00 00 00
83 c0 Of




Computer Architecture

=sInstruction Set Architecture (ISA): The "programming language” of the processor,
the syntax and language of how to give commands to the processor.
There are a set of ISAs that are supported by a larger collection of microarchitectures

Ex: x86, ARM ISA, TI DSPs ISA
The ISA defines:

The system’s state (e.g. registers, memory, program counter)
The instructions the CPU can execute

The effect that each of these instructions will have on the system state

=Microarchitecture: The way a specific processor executes a given ISA based on the
processor's design.

The Microarchitecture defines how the data (data path) moves through the parts of the processor
(control path), often represented as a data flow diagram.

microarchitecture dictates the flow of instructions through items within the processor such as logic
gates, registers, Arithmetic Logic Units (ALUs)



Mainstream ISAs

intel.

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

Design CISC
Type Register-memory
Encoding Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5,i7, M)
x86-64 instruction set

ARM architectures

Designer ARM Holdings

Bits 32-bit, 64-bit

Introduced 1985; 31 years ago

Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and

32-bit instructions. ARMv7 user-
space compatibility[”

Endianness Bi (little as default)

Smartphone (and similar) devices
(iPhone, iPad, Raspberry Pi)
ARM instruction set

MIP S

ECHNOLOGIES

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
(Blu-ray, Playstation 2)
MIPS instruction set




So... who writes assembly?

=Chances are, you'll never write a program in assembly!
BUT understanding assembly is the key to the machine-level execution model.

=Some use cases for assembly:

When working in embedded where you can't trust the compiler to reduce program size as efficiently as
possible

When special purpose subroutines are required that are not possible in higher level languages
Behavior of programs in the presence of bugs

When high-level language model breaks down
Tuning program performance
Implementing systems software
Fighting malicious software

Distributed software is in binary form



Assembly Programmer’s View

=Programmer-visible state
-PC: the Program Counter (%rip in x86-64)
- Address of next instruction

- Named registers
- Heavily used program data
- Condition codes

- Store status information about most recent arithmetic operation

- Used for conditional branching

CPU
fre] | reper |

Addr S

Data -

Memory
e Code
e Data
e Stack




Registers

=A |location in the CPU that stores a small amount of data, which can be accessed very quickly (once
every clock cycle)

=Registers have names, not addresses
In assembly, they start with % (e.g. %rsi)

=Registers are at the heart of assembly programming
They are a precious commodity in all architectures, but especially x86

Memory Registers

=Addresses (EX: Ox7FFFD024C3DC) =Names (EX: %rdi)

-Big - 8 GiB “Small - (16 x 8 B) = 128 B

=Slow -50-100 ns =Fast - sub-nanosecond timescale
=Dynamic - Can “grow” as needed =Static - fixed number in hardware

while program runs



Assembly Instruction Basics

Assembly instructions fall into one of 3
categories:

=Transfer data between memory and register

Load data from memory into register
%reg = Mem[address]

Store register data into memory
Meml[address] = %reg

=Perform arithmetic operation on register or
memory data

cC=a+b; z=x<«y; i=h&g;

=Control flow: what instruction to execute next
Unconditional jumps to/from procedures
Conditional branches

ltems in Assembly fall into one of 3 operand
categories:

siImmediate: Constant integer data
Examples: $0x400, $-533
Like C literal, but prefixed with ‘$’
Encoded with 1, 2, 4, or 8 bytes

=Register: 1of 16 integer registers
Examples: %rax, %r13

*Memory: Consecutive bytes of memory at
a computed address

Simplest example: (%rax)



Assume we have two variables called rax and rdx.

EXa m p | e: M OVi N g Data Which assembly instruction does *rdx = rax?

.movqg srdx, S%Srax

.movqg (%rdx), %rax

=General form: mov  source, destination

.. . . . % , (%rd
Missing letter (_) specifies size of operands WOVE BLEE, (HEX)

Lots of these in typical code movq (%rax), Srdx

Examples: Source Dest Src, Dest C Analog
"movb src, dst
Move 1-byte “byte” I Reg movg $0x4, S%rax rax = 4;
mm
smovw src, dst Mem |movg $-147, (%rax) *rax = -147;
Move 2-byte “word”
Re % , %rd dx = rax;
« ” o S * — .
Move 4-byte “long word Mem |movq %rax, (%rdx) rdx = rax;
"movqg Ssrc, dst
Mem Reg movqg (%rax), Srdx rdx = *rax;

Move 8-byte “quad word”



Arithmetic Operation Instructions
=Binary (two-operand) Instructions: “_

Beware argument addq
|
order! -

How do you
implement imulq

“ T shrq
r3=r1+r27?
shlq

xorq
andgq

orqg

src,

src,

src,

src,

src,

src,

src,

src,

dst

dst
dst

dst
dst

dst

dst

dst = dst + src (dst += src)
dst = dst —src
dst = dst * src signed mult

dst = dst >> src

dst = dst << src (same as salq)

dst = dst / src
dst = dst & src

dst =dst [ src

g = operand size specifier
(e.g.b,w,l,q=1,2,4,8)



Example: Arithmetic Operations

Sesiser | Usel)

long simple arith(long x, long V) o rdi

1°t argument (x)

{ Srsi 2" argument ()

long t1 = x + y;
long L2 = t1 * 3;
return t2;

$rax return value

Y +t= X;
y *= 3;

long r = y;

simplie Ve i bl .4?”’—4" return r;

addq $rdi, %rsi
imulq 53, oESL
movq $rsli, %srax

ret




Example: swap()

void swap (long *xp, long *yp) { Registers Memory
long t0 = *xp; SEdi o——>
long tl = *yp; e e
=Xp — £l Srax
*yp = t0; SEQX

}

swap ' Register Variable
movg (%rdi), %rax srdi ¢ Xp
movq (%rsi), Srdx $rsi e yp
movqg Srdx, (%rdi) Srax e t0
movqg Srax, (%rsi) Soder  4s £
ret . g

CSE 374 AU 20 - KASEY CHAMPION 16



Example: swap()

Registers Memory word Address
5rdi | 0x120 B 0x120
2rsi | 0x100 "

U=l 10
srax 123 0x108
srax 456 |= 456 | 0x100
swap :

—r—>movq (%rdi), Srax # t0 = *xp
movqg (%rsi), %rdx # tl1 = *yp
movqg %rdx, (%rdi) # *xp = tl
movqg %rax, (%rsi) # *yp = tO0
ret

CSE 374 AU 20 - KASEY CHAMPION 17



Example: swap()

Memor

Registers Word Address
5rdi | 0x120 456 || 0x120
srsi | 0x100 Ux. e
Ox110
2t 12 0x108
Srdx | 456 123 || 0x100
swap :
movqg (%rdi), %rax # t0 = *xp
movqg (%rsi), %rdx # tl = *yp
—+—>movq Srdx, (3rdi) # *xp = tl
movqg <3rax, (%rsi) # *yp = tO0
ret

CSE 374 AU 20 - KASEY CHAMPION 18



Where does everything go?

char big array[1L<<24]; /* 16 MB */
char huge array[lL<<31l]; /* 2 GB */ \\\\\\\
int global = 0;
int useless () { return 0; }
int main ()
{
void *pl, *p2, *p3, *p4;
‘int local = 0:
pl = malloc(lL << 28); /* 256 MB */
p2 = malloc(l << 8); /* 256 B */’////
p3 = malloc (1L << 32),; /* 4 GB */
p4d = malloc(lL << 8); /* 256 B */
/* Some print statements */

Static Data

Literals

Instructions

CSE 374 AU 20 - KASEY CHAMPION

19



Buffer Overtlow

A buffer is an array used to temporarily store data
You've probably seen “video buffering...”
The video is being written into a buffer before being played
Buffers can also store user input

=C does not check array bounds
Many Unix/Linux/C functions don't check argument sizes
Allows overflowing (writing past the end) of buffers (arrays)

="Buffer Overflow” = Writing past the end of an array

=Characteristics of the traditional Linux memory layout provide opportunities for
malicious programs
Stack grows “backwards” in memory
Data and instructions both stored in the same memory



Buffer Overtlow

=Stack grows down towards lower addresses
=Buffer grows up towards higher addresses

=If we write past the end of the array, we overwrite data on the stack!

| Higher Addresses Higher Addresses Higher Addresses
00 00 ' 00
88 Enter input: hello 88 Enter input: helloabcdef 88
) -> overflow!
00 > no overflow ~ T
00 00
40 40
dd dd
bf bf

CSE 374 AU 20 - KASEY CHAMPION 21



What happens when there is an overflow?

=Buffer overflows on the stack
can overwrite “interesting”

data
Attackers just choose the right inputs

=Simplest form (sometimes
called “stack smashing”)

Unchecked length on string input into
bounded array causes overwriting of
stack data

Try to change the return address of the
current procedure

*Why is this a big deal?
It was the #1 technical cause of security
vulnerabilities

#1 overall cause is social engineering / user
ignorance

Return
Address

buf[7]
A

buf[0]

00

00

00

00

00

40

dd

bf

Return
Address

buf[7]

buf[0]

(

Enter input: helloabcdef

00

00

00

00

I\Ol

|f|

|e|

ldl

'C'

We’ve lost our way!
Lost address of function pointer
telling us which instruction to
return to

lbl

lal

UO'

lll

|ll

|el

lhl




=Buffer overflow bugs can allow
attackers to execute arbitrary code on
victim machines

Distressingly common in real programs

void foo () {
bar () ;
A:... return address A

}

*Input string contains byte
representation of executable code

=Overwrite return address A with
address of buffer B

int bar () {
char buf[64];
gets (buf) ;

return ...;

“When bar() executes ret, will jump to
exploit code

https://www.qgao.qov/assets/700/694913.pdf

data written
by gets ()

buf starts here=> B—9\.

Malicious Bufter Overflow - Code Injection

Stack after call to get s ()

( [ XB

< pad

exploit code

\

i N

’

foo
stack frame

bar
stack frame


https://www.gao.gov/assets/700/694913.pdf

Examples

=QOriginal “Internet worm” (1988)

Early versions of the finger server (fingerd) used gets() to
read the argument sent by the client: finger
droh@cs.cmu.edu

Worm attacked fingerd server with phony argument:

finger "exploit-code padding new-return-addr”

Exploit code: executed a root shell on the victim machine with a direct
connection to the attacker

Robert Morris is now a professor at MIT, first person
convicted under the ‘86 Computer Fraud and Abuse Act

The Morris Internet Worm source code

grre Computer
Jo History
* Museum

=Heartbleed (2014, affected 17% of servers)

Buffer over-read in OpenSSL
“Heartbeat” packet

Specifies length of message and server echoes it back
Library just “trusted” this length

Allowed attackers to read contents of memory anywhere they wanted
Est. 17% of Internet affected
Similar issue in Cloudbleed (2017)

SERVER, ARE YOU STiLL. THERE?
IF S0, REPLY "HAT™ (500 LETTERS).

¥,

ser Meg wants these 500 letters: HAT.

HAT. Lucas requests the "missed conne
ctions" page. Eve (administrator) wen
ts to set Server’s master key to "148
35038534". Isabel wants pages abocut "
snakes but not too long". User Karen
wants to change account password to "




Protect Your Codel!

*Employ system-level protections
Code on the Stack is not executable
Randomized Stack offsets

=Avoid overflow vulnerabilities
Use library routines that limit string lengths
Use a language that makes them impossible

*Have compiler use “stack canaries”

place special value (“canary”) on stack just beyond
buffer



System Level Protections

*Non-executable code segments

=In traditional x86, can mark region of memory
as either “read-only” or “writeable
Can execute anything readable

*x86-64 added explicit “execute” permission

=Stack marked as non-executable
Do NOT execute code in Stack, Static Data, or Heap regions
Hardware support needed

*Works well, but can't always use it

*Many embedded devices do not have this
protéction

Cars
Smart homes
Pacemakers

=Some exploits still work!

sRandomized stack offsets

At start of program, allocate random amount of space
on stack

Shifts stack addresses for entire program
Addresses will vary from one run to another

Makes it difficult for hacker to predict beginning of
inserted code



Avoid Overflow Vulnerabilities

=Use library routines that limit string lengths
fgets instead of gets (2" argument to fgets sets limit)
strncpy instead of strcpy

Don'’t use scanf with %s conversion specification
Use fgets to read the string

Or use %ns where n is a suitable integer

/* Echo Line */

void echo ()

{
char buf[8];
fgets (buf, 8,
puts (buf) ;

}

/* Way too small!
stdin) ;

*/

=Alternatively, don’t use C - use a language that does array index bounds check

Buffer overflow is impossible in Java
ArrayIndexOutOfBoundsException

Rust language was designed with security in mind

Panics on index out of bounds, plus more protections




Stack Canaries

=Basic Idea: place special value (“canary”) on stack just beyond buffer
Secret value that is randomized before main()
Placed between buffer and return address
Check for corruption before exiting function

*GCC implementation
~fstack-protector

unix>. /buf unix> . /buf
Enter string: 12345678 Enter string: 123456789
12345678 *** stack smashing detected ***




Questions

CSE 374 AU 20 - KASEY CHAMPION 29



