- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #22
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 22 : C++ I n h e rita n Ce Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

*HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm
=End of quarter due date Wednesday December 16" @ 9pm

Inheritance in C++

=Inheritance is the formal establishment of
hierarchical relationships between classes in
order to facilitate the sharing of behaviors

A parent-child “is-a” relationship between “

classes
A child (derived class) extends a parent (base class) Superclass Base Class
=Benefits: Subclass Derived Class
Code reuse

Children can automatically inherit code from parents
Polymorphism
Ability to redefine existing behavior but preserve the interface
Children can override the behavior of the parent
Others can make calls on objects without knowing which part of the inheritance
treeitisin
Extensibility
Children can add behavior

Inheritance Design Example: Stock Portfolio

=A portfolio represents a

person’s financial investments

Each asset has a cost (i.e. how much
was paid for it) and a market value (i.e.
how much it is worth)

The difference between the cost and market
value is the profit (or loss)
Different assets compute market value
in different ways
A stock that you own has a ticker symbol (e.g.

“GOO0CG"), a number of shares, share price paid,
and current share price

A dividend stock is a stock that also has dividend
payments

Cash is an asset that never incurs a profit or loss

symbol
total shares
total cost
current price

GetMarketValue ()
GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()

GetCost ()

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

amount

GetMarketValue ()

symbol
total shares
total cost_
current price

GetMarketValue ()
GetProfit ()
GetCost ()

Cash

amount _

GetMarketValue ()

DividendStock

symbol
total shares
total cost
current price
dividends__

GetMarketValue ()
GetProfit ()
GetCost ()

Class Derivation List

=Comma-separated list of classes to inherit from: "public: visible to all other classes
#include "BaseClass.h" sprotected: visible to current class
class Name : public BaseClass { and its derived classes
Ve sprivate: visible only to the current

class
Focus on single inheritance, but multiple inheritance possible

#include "BaseClass.h"

=Use protected for class members

#include "BaseClass2.h" only when:
class Name : public BaseClass, public BaseClass2 { Class is designed to be extended by derived
classes

bi Derived classes must have access but clients

=Almost always use “public” inheritance should not be allowed
Acts like extends does in Java

Any member that is non-private in the base class is the same in the
derived class; both interface and implementation inheritance

Except that constructors, destructors, copy constructor, and assignment operator are never
inherited

We'll only use public inheritance in this class

Method Override

=Overrides - If a derived class defines a method with the same method name and argument
types as one derived in the base class, it is overridden
replaces the base class version with the most closely defined version

=If you want to use the base-class code, specify the base class when making a method call
class::method(...)
Like Java “super” but C++ doesn’t have “super” because of multiple inheritance

Constructing and Destructing

=Constructor of base class gets called before constructor of derived class
default (zero-argument) constructor unless you specify a different on after the : in the constructor
Initializer syntax: Foo::Foo(..) : Bar (args); it(x) { .. }

=Destructor of base class gets called after destructor of derived class

=Constructors & destructors “extend” rather than “override”
same as Java

class Derived : public Base {
public:
double m cost;
Derived (double cost = 0.0, int id = 0)
Base { id }, // Call Base (int) constructor
m cost { cost } // assign prameter values

{
}

double getCost () const (return m cost; }

s

Polymorphism in C++

*"|n Java: PromisedType var = new ActualType ();
var is a reference (different term than C++ reference) to an object of ActualType on the Heap
ActualType must be the same class or a subclass of PromisedType

"I[n C++: PromisedType var p = new ActualType():;
var_p is a pointer to an object of ActualType on the Heap
ActualType must be the same or a derived class of PromisedType
(also works with references)

PromisedType defines the interface (i.e. what can be called on var_p), but ActualType may determine which
version gets invoked

=polymorphism is the ability to access different objects through the same interface

Other Inheritance Rules

=Static fields

the “static” keyword means only ONE variable for all object instances of this class, not one per object like
normal fields

can be used to generate unique ids for each instance of an object or keep a count of how many instances have
been created

=deleted constructors

C++ automatically generates a “copy constructor” for your class if you do not provide one, however
sometimes you want to prevent copies. (EX: copying bank account objects). Instead declare a copy

constructor in the header file and set the constructor “= delete;” which means we delete anything created and
prevent it from being used anywhere else

Up/Down Casting

=Up Casting
An object of a derived class cannot be cast to an object of a base class

for the same reason a struct T1 {int x,y,z;} cannot be cast to type struct T2 {int x,y;} (different size)

a pointer to an object of a derived class can be cast to a pointer to an object of base class

for the same reason a struct T1* can be cast to type struct T2* (pointers to location in memory have same size)

After such an “upcast’, field access works fine

=Down Casting
C pointer-casts: unchecked; be careful
Java: checkedl; may raise ClassCastException
New: C++ has “all the above” (ie several different kinds of casts)

if you use single-inheritance and know what you are doing, the C-style casts (same pointer, assume more about what is pointed to)V should
work fine for down casts

Inheritance Design Example: Stock Portfolio

DividendStock

symbol_ dividends_
total_ shares__ symbol
total cost total shares
— = total_cost_ GetMarketValue ()
current price .
_P _ current price GetProfit ()
GetMarketValue () GetMarketValue () GetCost ()
. GetProfit () ..
GetProfit () GetCost () PayDividend ()
GetCost ()

A derived class:
=sInherits the behavior and state (specification) of the base class
=Overrides some of the base class’ member functions (opt.)

=Extends the base class with new member functions, variables (opt.)

#ifndef BANKACCOUNT H

#define BANKACCOUNT H #ifndef SAVINGSACCOUNT H

#define SAVINGSACCOUNT H

include <iostream> .
#include "BankAccount.h"

namespace bank { namespace bank {

class BankAccount {

, class SavingsAccount : public BankAccount ({
public: ublic:
explicit BankAccount (const std::string& accountHolder); P . . .
SavingsAccount (double interestRate, std::string name);
BankAccount (const BankAccount& other) = delete;
double getInterestRate() const;
// Accessors
i BRal ;
}nt getBalance () const virtual void withdraw (int amount) override;
int getAccountId() const;
const std::stringé& getAccountHolder () const;

private:

o bool isNewMonth (time t* curTime) ;
// Modifier - add money. (_)

void deposit (int amount) ; double interestRate :

time t lastMonth ;

// different for every type of account, int numTransactionsInMonth ;

// require derived classes to implement y
virtual void withdraw(int amount) = 0; !
protected:

// derived classes can modify the balance.

dif
vold setBalance (int balance) ; fendi

SavingsAccount.cc

private:
const std::string accountHolder ;
const int accountId ;
int balance ;

static int accountCount ;
b
}
#endif BankAccount.cc

Selt Check

b()

ml. al
m2. a2
b2
m3.
b3

#include <iostream>

using namespace std;

class A {
public:

b

A() { cout << "a()"

~A() { cout << "~a"
void ml () { cout <<
void m2 () { cout <<

<< endl; }
<< endl; }
"al" << endl;
"a2" << endl;

// class B inherits from class A

class B

public A {

public:

B() { cout << "b()"

~B() { cout << "~b"
void m2 () { cout <<
<<
void m3() { cout <<
}i
int main () {

//B* x = new B();

A* x = new B();
x=>ml () ;
x=>m2 () ;
x=>m3 () ;

delete x;

<< endl; }

<< endl; }
A::m2();

"pb2" << endl;
"b3" << endl;

Abstract Classes

=Sometimes we want to include a function in a class but only implement it in derived

classes
In Java, we would use an abstract method

In C++, we use a “pure virtual” function
Example: virtual string noise() = O;

svirtual string noise() = O;

=A class containing any pure virtual methods is abstract
You can't create instances of an abstract class
Extend abstract classes and override methods to use them

=A class containing only pure virtual methods is the same as a Java interface
Pure type specification without implementations

class C {

Virtua‘ Meth()ds virtual tO0 m(tl, t2,..,tn) = 0;

Y
=Code for class functions stored in a function table
look up the functions for a class based on object type

If we want an object to look in the function table for the constructed class, not the variable type (often a base type) we
make the function “virtual

=a non-virtual method call is resolved using the compile-time type of the receiver expression

=a virtual method call is resolved using the run-time class of the receiver object (what the
expression evaluates to)

Aka: dynamic dispatch

A method-call is virtual if the method called is market virtual or overrides a virtual method

SO “on?"virtual" somewhere up in the base-class chain is enough, but it's better style to be more explicit and repeat
virtua

=pure virtual functions

to maximize code sharing sometimes you will need “theoretical” o'bge.cts or functions that will be shared across more
specific implementations. (EX: “bank account” is too general to exist, instead you use it to share code across “checking
account” and “business account”)

When defining abstract classes sometimes you want to declare a function that must be implemented by all derived
classes, you can create a virtual function:

virtual void withdraw(int amount) = 0 ;

Dynamic Dispatch

=Usually, when a derived function is available for an object, we want the derived function to
be invoked
This requires a run time decision of what code to invoke

*A member function invoked on an object should be the most-derived function accessible
to the object’s visible type

Can determine what to invoke from the object itself

“Example:
void PrintStock (Stock* s) { s->Print(); }

=Calls the appropriate print () without knowing the actual type of s, other than it is some sort of
Stock

=Functions just like Java

=Unlike Java: Prefix the member function declaration with the virtual keyword
Derived/child functions don't need to repeat virtual, but was traditionally good style to do so
This is how method calls work in Java (no virtual keyword needed)
You almost always want functions to be virtual

Dynamic Dispatch

Stock.cc
double Stock::GetMarketValue () const {
return get_ shares () * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue () - GetCost():;

double DividendStock:: GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

double "DividendStock":: GetProfit () const { //
lnherited
return GetMarketValue () - GetCost():;

DividendStock.cc

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s->GetMarketValue () ;

// invokes Stock::GetProfit(),

// since that method is inherited.

// Stock::GetProfit () invokes

// DividendStock: :GetMarketValue(),

// since that 1is the most-derived accessible
function.

s->GetProfit () ;

CSE 374 AU 20 - KASEY CHAMPION 17

Most-Derived Selt-Check

class A {
public:

virtual void Foo () ;

Y

class B : public A {
public:

virtual void Foo () ;

s

class C : public B {
s

class D : public C {
public:

virtual void Foo () ;

s

class E : public C {
} i

void Bar () {
A* a ptr;
C c;
E e;

// Ql:
a ptr = &c;
a ptr->Foo () ;

// Q2

a ptr = &e;

a ptr->Foo () ;
}

Ql

Q2

CSE 374 AU 20 - KASEY CHAMPION

18

Questions

CSE 374 AU 20 - KASEY CHAMPION 19

RAII

="Resource Acquisition is Initialization"

=Design pattern at the core of C++

=When you create an object, acquire resources
Create = constructor

Acquire = allocate (e.g. memory, files)

=\When the object is destroyed, release
resources

Destroy = destructor
Release = deallocate

=\When used correctly, makes code safer and
easier to read

char* return msg c() {
int size = strlen("hello") +
char* str = malloc(size);

strncpy (str, "hello", size);
return str;

1;

std::string return msg cpp() {
std::string str("hello");
return str;

using namespace std;

char* sl = return msg c();
cout << sl << endl;
string s2 = return msg cpp();

cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Compiler Optimization

*The compiler sometimes uses a “return by value optimization” or “move semantics”

to eliminate unnecessary copies
Sometimes you might not see a constructor get invoked when you might expect it

Point foo () {

Point vy; // default ctor

return y; // copy ctor? optimized?
}
Point x (1, 2); // two-ints—-argument ctor
Point y = Xx; // copy ctor
Point z = foo(); // copy ctor? optimized?

Namespaces

sEach namespace is a separate scope
Useful for avoiding symbol collisions!

*Namespace definition:

namespace name {
// declarations go here

}
Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents

Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)
This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

*Namespaces vs classes
They seems somewhat similar, but classes are not namespaces:

There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,
functions, etc.)
To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)

Unless you are using that namespace
You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

Const

«C++ introduces the “const” keyword which declares a value that cannot change

sconst int CURRENT_YEAR = 2020;

