
Lecture 22: C++ Inheritance
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #22

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Inheritance in C++

▪Inheritance is the formal establishment of
hierarchical relationships between classes in
order to facilitate the sharing of behaviors

▪A parent-child “is-a” relationship between
classes
-A child (derived class) extends a parent (base class)

▪Benefits:
-Code reuse

- Children can automatically inherit code from parents

-Polymorphism
- Ability to redefine existing behavior but preserve the interface

- Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the inheritance
tree it is in

-Extensibility
- Children can add behavior

3CSE 374 AU 20 - KASEY CHAMPION

Java C++

Superclass Base Class

Subclass Derived Class

Inheritance Design Example: Stock Portfolio

▪A portfolio represents a
person’s financial investments
-Each asset has a cost (i.e. how much

was paid for it) and a market value (i.e.
how much it is worth)
- The difference between the cost and market

value is the profit (or loss)

-Different assets compute market value
in different ways
- A stock that you own has a ticker symbol (e.g.

“GOOG”), a number of shares, share price paid,
and current share price

- A dividend stock is a stock that also has dividend
payments

- Cash is an asset that never incurs a profit or loss

4CSE 374 AU 20 - KASEY CHAMPION

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

Asset (abstract)

GetMarketValue()

GetProfit()
GetCost()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Class Derivation List

▪Comma-separated list of classes to inherit from:

-Focus on single inheritance, but multiple inheritance possible

▪Almost always use “public” inheritance
- Acts like extends does in Java

- Any member that is non-private in the base class is the same in the
derived class; both interface and implementation inheritance
- Except that constructors, destructors, copy constructor, and assignment operator are never

inherited

- We’ll only use public inheritance in this class

5CSE 374 AU 20 - KASEY CHAMPION

#include "BaseClass.h"

class Name : public BaseClass {
 ...
};

▪public: visible to all other classes

▪protected: visible to current class
and its derived classes

▪private: visible only to the current
class

▪Use protected for class members
only when:
- Class is designed to be extended by derived

classes

- Derived classes must have access but clients
should not be allowed

#include "BaseClass.h"
#include "BaseClass2.h"
class Name : public BaseClass, public BaseClass2 {
 ...
};

Method Override

▪Overrides - If a derived class defines a method with the same method name and argument
types as one derived in the base class, it is overridden
-replaces the base class version with the most closely defined version

▪If you want to use the base-class code, specify the base class when making a method call
-class::method(…)

-Like Java “super” but C++ doesn’t have “super” because of multiple inheritance

6CSE 374 AU 20 - KASEY CHAMPION

Constructing and Destructing

▪Constructor of base class gets called before constructor of derived class
-default (zero-argument) constructor unless you specify a different on after the : in the constructor

-Initializer syntax: Foo::Foo(…) : Bar (args); it(x) { … }

▪Destructor of base class gets called after destructor of derived class

▪Constructors & destructors “extend” rather than “override”
-same as Java

7CSE 374 AU 20 - KASEY CHAMPION

class Derived : public Base {
public:
 double m_cost;
 Derived(double cost = 0.0, int id = 0)
 : Base { id }, // Call Base(int) constructor
 m_cost { cost } // assign prameter values
 {
 }
 double getCost() const (return m_cost; }
};

Polymorphism in C++

▪In Java: PromisedType var = new ActualType();
-var is a reference (different term than C++ reference) to an object of ActualType on the Heap

-ActualType must be the same class or a subclass of PromisedType

▪In C++: PromisedType* var_p = new ActualType();
-var_p is a pointer to an object of ActualType on the Heap

-ActualType must be the same or a derived class of PromisedType

-(also works with references)

-PromisedType defines the interface (i.e. what can be called on var_p), but ActualType may determine which
version gets invoked

▪polymorphism is the ability to access different objects through the same interface

8CSE 374 AU 20 - KASEY CHAMPION

Other Inheritance Rules

▪Static fields
-the “static” keyword means only ONE variable for all object instances of this class, not one per object like

normal fields

-can be used to generate unique ids for each instance of an object or keep a count of how many instances have
been created

▪deleted constructors
-C++ automatically generates a “copy constructor” for your class if you do not provide one, however

sometimes you want to prevent copies. (EX: copying bank account objects). Instead declare a copy
constructor in the header file and set the constructor “= delete;” which means we delete anything created and
prevent it from being used anywhere else

9CSE 374 AU 20 - KASEY CHAMPION

Up/Down Casting

▪Up Casting
-An object of a derived class cannot be cast to an object of a base class

- for the same reason a struct T1 {int x,y,z;} cannot be cast to type struct T2 {int x,y;} (different size)

-a pointer to an object of a derived class can be cast to a pointer to an object of base class
- for the same reason a struct T1* can be cast to type struct T2* (pointers to location in memory have same size)

-After such an “upcast”, field access works fine

▪Down Casting
-C pointer-casts: unchecked; be careful

-Java: checkedl; may raise ClassCastException

-New: C++ has “all the above” (ie several different kinds of casts)
- if you use single-inheritance and know what you are doing, the C-style casts (same pointer, assume more about what is pointed to)V should

work fine for down casts

10CSE 374 AU 20 - KASEY CHAMPION

Inheritance Design Example: Stock Portfolio

 DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

11CSE 374 AU 20 - KASEY CHAMPION

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

A derived class:

▪Inherits the behavior and state (specification) of the base class

▪Overrides some of the base class’ member functions (opt.)

▪Extends the base class with new member functions, variables (opt.)

12CSE 374 AU 20 - KASEY CHAMPION

#ifndef BANKACCOUNT_H
#define BANKACCOUNT_H

#include <iostream>

namespace bank {

class BankAccount {
 public:
 explicit BankAccount(const std::string& accountHolder);
 BankAccount(const BankAccount& other) = delete;

 // Accessors
 int getBalance() const;
 int getAccountId() const;
 const std::string& getAccountHolder() const;

 // Modifier - add money.
 void deposit(int amount);

 // different for every type of account,
 // require derived classes to implement
 virtual void withdraw(int amount) = 0;

 protected:
 // derived classes can modify the balance.
 void setBalance(int balance);

 private:
 const std::string accountHolder_;
 const int accountId_;
 int balance_;

 static int accountCount_;
};
}
#endif

#ifndef SAVINGSACCOUNT_H
#define SAVINGSACCOUNT_H

#include "BankAccount.h"

namespace bank {

class SavingsAccount : public BankAccount {
 public:
 SavingsAccount(double interestRate, std::string name);

 double getInterestRate() const;

 virtual void withdraw(int amount) override;

 private:
 bool isNewMonth(time_t* curTime);

 double interestRate_;
 time_t lastMonth_;
 int numTransactionsInMonth_;
};

}

#endif

BankAccount.cc

SavingsAccount.cc

Self Check

13CSE 374 AU 20 - KASEY CHAMPION

#include <iostream>

using namespace std;

class A {
public:
 A() { cout << "a()" << endl; }
 ~A() { cout << "~a" << endl; }
 void m1() { cout << "a1" << endl; }
 void m2() { cout << "a2" << endl; }
};

// class B inherits from class A
class B : public A {
public:
 B() { cout << "b()" << endl; }
 ~B() { cout << "~b" << endl; }
 void m2() { cout << A::m2();
 << "b2" << endl; }
 void m3() { cout << "b3" << endl; }
};

int main() {
 //B* x = new B();
 A* x = new B();
 x->m1();
 x->m2();
 x->m3();
 delete x;
}

m1.

m2.

m3.

b()

a1

a2
b2

b3

Abstract Classes

▪Sometimes we want to include a function in a class but only implement it in derived
classes
-In Java, we would use an abstract method

-In C++, we use a “pure virtual” function
- Example: virtual string noise() = 0;

▪virtual string noise() = 0;

▪A class containing any pure virtual methods is abstract
-You can’t create instances of an abstract class

-Extend abstract classes and override methods to use them

▪A class containing only pure virtual methods is the same as a Java interface
-Pure type specification without implementations

14CSE 374 AU 20 - KASEY CHAMPION

Virtual Methods
▪Code for class functions stored in a function table

- look up the functions for a class based on object type
- If we want an object to look in the function table for the constructed class, not the variable type (often a base type) we

make the function “virtual”

▪a non-virtual method call is resolved using the compile-time type of the receiver expression

▪a virtual method call is resolved using the run-time class of the receiver object (what the
expression evaluates to)
- Aka: dynamic dispatch

▪A method-call is virtual if the method called is market virtual or overrides a virtual method
- so “one virtual” somewhere up in the base-class chain is enough, but it’s better style to be more explicit and repeat

“virtual”

▪pure virtual functions
- to maximize code sharing sometimes you will need “theoretical” objects or functions that will be shared across more

specific implementations. (EX: “bank account” is too general to exist, instead you use it to share code across “checking
account” and “business account”)

- When defining abstract classes sometimes you want to declare a function that must be implemented by all derived
classes, you can create a virtual function:

-virtual void withdraw(int amount) = 0 ;

15CSE 374 AU 20 - KASEY CHAMPION

class C {
 virtual t0 m(t1, t2,…,tn) = 0;
 …
};

Dynamic Dispatch
▪Usually, when a derived function is available for an object, we want the derived function to
be invoked
- This requires a run time decision of what code to invoke

▪A member function invoked on an object should be the most-derived function accessible
to the object’s visible type
- Can determine what to invoke from the object itself

▪Example:
-void PrintStock(Stock* s) { s->Print(); }

▪Calls the appropriate Print() without knowing the actual type of *s, other than it is some sort of
Stock

▪Functions just like Java

▪Unlike Java: Prefix the member function declaration with the virtual keyword
- Derived/child functions don’t need to repeat virtual, but was traditionally good style to do so
- This is how method calls work in Java (no virtual keyword needed)
- You almost always want functions to be virtual

16CSE 374 AU 20 - KASEY CHAMPION

Dynamic Dispatch

17CSE 374 AU 20 - KASEY CHAMPION

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(),
// since that method is inherited.
// Stock::GetProfit() invokes
// DividendStock::GetMarketValue(),
// since that is the most-derived accessible
function.
s->GetProfit();

double DividendStock::GetMarketValue() const {
 return get_shares() * get_share_price() + dividends_;
}

double "DividendStock":: GetProfit() const { //
inherited
 return GetMarketValue() – GetCost();
}

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
}

DividendStock.cc

Stock.cc

Most-Derived Self-Check

18CSE 374 AU 20 - KASEY CHAMPION

class A {
 public:
 virtual void Foo();
};

class B : public A {
 public:
 virtual void Foo();
};

class C : public B {
};

class D : public C {
 public:
 virtual void Foo();
};

class E : public C {
};

void Bar() {
 A* a_ptr;
 C c;
 E e;

 // Q1:
 a_ptr = &c;
 a_ptr->Foo();

 // Q2:
 a_ptr = &e;
 a_ptr->Foo();
}

A.

B.

C.

D.

Q1

A

A

B

B

Q2

B

D

B

D

Questions

19CSE 374 AU 20 - KASEY CHAMPION

RAII

▪"Resource Acquisition is Initialization"

▪Design pattern at the core of C++

▪When you create an object, acquire resources
-Create = constructor

-Acquire = allocate (e.g. memory, files)

▪When the object is destroyed, release
resources
-Destroy = destructor

-Release = deallocate

▪When used correctly, makes code safer and
easier to read

20CSE 374 AU 20 - KASEY CHAMPION

char* return_msg_c() {
 int size = strlen("hello") + 1;
 char* str = malloc(size);
 strncpy(str, "hello", size);
 return str;
}

std::string return_msg_cpp() {
 std::string str("hello");
 return str;
}

using namespace std;
char* s1 = return_msg_c();
cout << s1 << endl;
string s2 = return_msg_cpp();
cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Compiler Optimization

▪The compiler sometimes uses a “return by value optimization” or “move semantics”
to eliminate unnecessary copies
-Sometimes you might not see a constructor get invoked when you might expect it

21CSE 374 AU 20 - KASEY CHAMPION

Point foo() {
 Point y; // default ctor
 return y; // copy ctor? optimized?
}

Point x(1, 2); // two-ints-argument ctor
Point y = x; // copy ctor
Point z = foo(); // copy ctor? optimized?

Namespaces

▪Each namespace is a separate scope
- Useful for avoiding symbol collisions!

▪Namespace definition:
-namespace name {
 // declarations go here
}

- Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents
- Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)

- This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

▪Namespaces vs classes
-They seems somewhat similar, but classes are not namespaces:
- There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,

functions, etc.)
- To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

22CSE 374 AU 20 - KASEY CHAMPION

Const

▪C++ introduces the “const” keyword which declares a value that cannot change

▪const int CURRENT_YEAR = 2020;

23CSE 374 AU 20 - KASEY CHAMPION

