
Lecture 22: C++ Inheritance
CSE 374: Intermediate
Programming Concepts and
Tools

1

http://pollev.com/cse374

Administrivia

▪HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Anatomy of C++ Class

3CSE 374 AU 20 - KASEY CHAMPION

Access Control

▪Access modifiers for members:
-public: accessible to all parts of the program

-private: accessible to the member functions of the class
- Private to class, not object instances

-protected: accessible to member functions of the class and any derived classes (subclasses – more to come,
later)

▪Reminders:
-Access modifiers apply to all members that follow until another access modifier is reached

-If no access modifier is specified, struct members default to public and class members default to private

4CSE 374 AU 20 - KASEY CHAMPION

Class Definition (Member declaration)

5CSE 374 AU 20 - KASEY CHAMPION

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(const int x, const int y); // member
function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H_

Class Member Definition

6CSE 374 AU 20 - KASEY CHAMPION

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
 x_ = x;
 this->y_ = y; // "this->" is optional unless name conflicts
}

double Point::Distance(const Point& p) const {
 // We can access p’s x_ and y_ variables either through the
 // get_x(), get_y() accessor functions or the x_, y_ private
 // member variables directly, since we’re in a member
 // function of the same class.
 double distance = (x_ - p. get_x()) * (x_ - p.get_x());
 distance += (y_ - p.y_) * (y_ - p.y_);
 return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
 x_ = x;
 y_ = y;
}

Class Usage

7CSE 374 AU 20 - KASEY CHAMPION

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
 Point p1(1, 2); // allocate a new Point on the Stack
 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return 0;
}

To allocate on the heap use the “new” keyword
Point* p1 = new Point(1, 2);

Constructors in C++

▪A constructor (ctor) initializes a newly-instantiated object
- A class can have multiple constructors that differ in parameters

- Which one is invoked depends on how the object is instantiated

▪Written with the class name as the method name:

Point(const int x, const int y);
- C++ will automatically create a synthesized default constructor if you have no user-defined constructors

- Takes no arguments and calls the default ctor on all non-“plain old data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or reference data members

▪4 different types of constructors
- default constructor – takes zero arguments. If you don’t define any constructors the compiler will generate one of these

for you (just like Java)
- copy constructor – takes a single parameter which is a const reference(const T&) to another object of the same type,

and initializes the fields of the new object as a copy of the fields in the referenced object
- user-defined constructors – initialize fields and take whatever arguments you specify
- conversion constructors – implicit, take a single argument. If you want a single argument constructor that is not implicit

must use the keyword “explicit” like: explicit String(const char* raw);

8CSE 374 AU 20 - KASEY CHAMPION

Synthesized Default Constructor

9CSE 374 AU 20 - KASEY CHAMPION

class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(int x, int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return EXIT_SUCCESS;
}

Synthesized Default Constructor

▪If you define any constructors, C++ assumes you have defined all the ones you intend to be
available and will not add any others

10CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // compiler error: if you define any
 // ctors, C++ will NOT synthesize a
 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments
 // constructor
}

Overloading Constructors

11CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
 SimplePoint a[3]; // invokes the default ctor 3 times
}

Copy Constructors

▪C++ has the notion of a copy constructor (cctor)
-Used to create a new object as a copy of an existing object

-Initializer lists can also be used in copy constructors

- initializes a new bag of bits (new variable or parameter)

-assignment (=) replaces an existing value with a new one
- may need to clean up old state (free heap data?)

12CSE 374 AU 20 - KASEY CHAMPION

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor

 Point y(x); // invokes the copy constructor
 Point z = y; // also invokes the copy constructor
}

Synthesized Copy Constructor

▪If you don’t define your own copy constructor, C++ will synthesize one for you
-It will do a shallow copy of all of the fields (i.e. member variables) of your class

-Sometimes the right thing; sometimes the wrong thing

13CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return EXIT_SUCCESS;
}

When Do Copies Happen?

▪The copy constructor is invoked if:
-You initialize an object from

another object of the same
type:

-You pass a non-reference
object as a value parameter
to a function:

-You return a non-reference
object value from a function:

14CSE 374 AU 20 - KASEY CHAMPION

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

void foo(Point x) { ... }

Point y; // default ctor
foo(y); // copy ctor

Point foo() {
 Point y; // default ctor
 return y; // copy ctor
}

Initialization Lists

▪C++ lets you optionally declare an initialization list as part of a constructor definition
-Initializes fields according to parameters in the list

-The following two are (nearly) identical:

15CSE 374 AU 20 - KASEY CHAMPION

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Initialization vs Construction

▪ Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering
-Data members that don’t appear in the initialization list are default initialized/constructed before body is

executed

▪ Initialization preferred to assignment to avoid extra steps
-Never mix the two styles

16CSE 374 AU 20 - KASEY CHAMPION

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

Destructors

▪C++ has the notion of a destructor (dtor)
-Like “free” in c. In fact, invokes free under the hood to clean up when freeing memory

-Invoked automatically when a class instance is deleted, goes out of scope, etc. (even via exceptions or other
causes!)
- Do not need to call destructors explicitly

-Place to put your cleanup code – free any dynamic storage or other resources owned by the object

-Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAII)

17CSE 374 AU 20 - KASEY CHAMPION

Point::~Point() { // destructor
 // do any cleanup needed when a Point object goes away
 // (nothing to do here since we have no dynamic resources)
}

Nonmember Functions

▪“Nonmember functions” are just normal functions that happen to use some class
- Called like a regular function instead of as a member of a class object instance

- These do not have access to the class’ private members

▪Useful nonmember functions often included as part of interface to a class
- Declaration goes in header file, but outside of class definition

▪A class can give a nonmember function (or class) access to its non-public members by declaring it as
a friend within its definition
- Not a class member, but has access privileges as if it were

- friend functions are usually unnecessary if your class includes appropriate “getter” public functions

18CSE 374 AU 20 - KASEY CHAMPION

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex&
a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a)
{
 ...
}

Inheritance in C++

▪Inheritance is the formal establishment of
hierarchical relationships between classes in
order to facilitate the sharing of behaviors

▪A parent-child “is-a” relationship between
classes
-A child (derived class) extends a parent (base class)

▪Benefits:
-Code reuse

- Children can automatically inherit code from parents

-Polymorphism
- Ability to redefine existing behavior but preserve the interface

- Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the inheritance
tree it is in

-Extensibility
- Children can add behavior

19CSE 374 AU 20 - KASEY CHAMPION

Inheritance Design Example: Stock Portfolio

▪A portfolio represents a
person’s financial investments
-Each asset has a cost (i.e. how much

was paid for it) and a market value (i.e.
how much it is worth)
- The difference between the cost and market

value is the profit (or loss)

-Different assets compute market value
in different ways
- A stock that you own has a ticker symbol (e.g.

“GOOG”), a number of shares, share price paid,
and current share price

- A dividend stock is a stock that also has dividend
payments

- Cash is an asset that never incurs a profit or loss

20CSE 374 AU 20 - KASEY CHAMPION

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

Asset

GetMarketValue()

GetProfit()
GetCost()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Class Derivation List

▪Comma-separated list of classes to inherit from:

-Focus on single inheritance, but multiple inheritance possible

▪Almost always use “public” inheritance
- Acts like extends does in Java

- Any member that is non-private in the base class is the same in the
derived class; both interface and implementation inheritance
- Except that constructors, destructors, copy constructor, and assignment operator are never

inherited

21CSE 374 AU 20 - KASEY CHAMPION

#include "BaseClass.h"

class Name : public BaseClass {
 ...
};

▪public: visible to all other classes

▪protected: visible to current class
and its derived classes

▪private: visible only to the current
class

▪Use protected for class members
only when:
- Class is designed to be extended by derived

classes

- Derived classes must have access but clients
should not be allowed

#include "BaseClass.h"
#include "BaseClass2.h"
class Name : public BaseClass, public BaseClass2 {
 ...
};

Inheritance Design Example: Stock Portfolio

 DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

22CSE 374 AU 20 - KASEY CHAMPION

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

A derived class:

▪Inherits the behavior and state (specification) of the base class

▪Overrides some of the base class’ member functions (opt.)

▪Extends the base class with new member functions, variables (opt.)

Polymorphism in C++

▪In Java: PromisedType var = new ActualType();
-var is a reference (different term than C++ reference) to an object of ActualType on the Heap

-ActualType must be the same class or a subclass of PromisedType

▪In C++: PromisedType* var_p = new ActualType();
-var_p is a pointer to an object of ActualType on the Heap

-ActualType must be the same or a derived class of PromisedType

-(also works with references)

-PromisedType defines the interface (i.e. what can be called on var_p), but ActualType may determine which
version gets invoked

23CSE 374 AU 20 - KASEY CHAMPION

Questions

24CSE 374 AU 20 - KASEY CHAMPION

RAII

▪"Resource Acquisition is Initialization"

▪Design pattern at the core of C++

▪When you create an object, acquire resources
-Create = constructor

-Acquire = allocate (e.g. memory, files)

▪When the object is destroyed, release
resources
-Destroy = destructor

-Release = deallocate

▪When used correctly, makes code safer and
easier to read

25CSE 374 AU 20 - KASEY CHAMPION

char* return_msg_c() {
 int size = strlen("hello") + 1;
 char* str = malloc(size);
 strncpy(str, "hello", size);
 return str;
}

std::string return_msg_cpp() {
 std::string str("hello");
 return str;
}

using namespace std;
char* s1 = return_msg_c();
cout << s1 << endl;
string s2 = return_msg_cpp();
cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Compiler Optimization

▪The compiler sometimes uses a “return by value optimization” or “move semantics”
to eliminate unnecessary copies
-Sometimes you might not see a constructor get invoked when you might expect it

26CSE 374 AU 20 - KASEY CHAMPION

Point foo() {
 Point y; // default ctor
 return y; // copy ctor? optimized?
}

Point x(1, 2); // two-ints-argument ctor
Point y = x; // copy ctor
Point z = foo(); // copy ctor? optimized?

Namespaces

▪Each namespace is a separate scope
- Useful for avoiding symbol collisions!

▪Namespace definition:
-namespace name {
 // declarations go here
}

- Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents
- Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)

- This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

▪Namespaces vs classes
-They seems somewhat similar, but classes are not namespaces:
- There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,

functions, etc.)
- To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

27CSE 374 AU 20 - KASEY CHAMPION

Const

▪C++ introduces the “const” keyword which declares a value that cannot change

▪const int CURRENT_YEAR = 2020;

28CSE 374 AU 20 - KASEY CHAMPION

