- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #22
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 22 : C++ I n h e rita n Ce Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

*HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm
=End of quarter due date Wednesday December 16" @ 9pm

Anatomy of C++ Class

Rectangle.h
A namespace name is mynamespace
R e EEER Y _—— Rectangle class in the mynamespace
class Rectangle { i
private: X : "
Field int width; Rectangle has two field width and height
int height;
public:
: | ———— The default Constructor (No parameter
Constructor | Rectanglel): ks L)
Rectangle (int, int); [— Constructor with 2 parameters width and height
public:

int getArea() {
return width * height ;

___ Method to calculate the area of this rectangle
)

Method:

int getWidth() {
return width;

Method returns the width of this rectangle
}

int getleight() { | = Method returns the height of this rectangle
return height;

}

CSE 374 AU 20 - KASEY CHAMPION

Access Control

=Access modifiers for members:
public: accessible to all parts of the program
private: accessible to the member functions of the class

Private to class, not object instances

protected: accessible to member functions of the class and any derived classes (subclasses — more to come,
later)

=Reminders:
Access modifiers apply to all members that follow until another access modifier is reached
If no access modifier is specified, struct members default to public and class members default to private

Class Definition (Member declaration)

Point.h

#ifndef POINT H_
#define POINT H
class Point {
public:

Point (const int x, const int vy); // constructor

int get x() const { return x ; } // inline member function

int get y() const { return y ; } // inline member function

double Distance (const Pointé& p) const; // member function
void SetLocation(const int x, const int y); // member
function

private:
int x ; // data member
int y ; // data member
}; // class Point

#ondif POINT H

CSE 374 AU 20 - KASEY CHAMPION 5

Class Member Definition

Point.cpp
#include <cmath>
#include "Point.h"
Point::Point (const int x, const int vy) {
X = X;
this->y = vy; // "this->" is optional unless name conflicts

}

double Point::Distance(const Pointé& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get x()) * (x - p.get x());
distance += (y - p.y) * (y - p.y);
return sqrt(distance);

void Point::SetLocation (const int x, const int y) {
X = Xy
Y_ = Yrs

CSE 374 AU 20 - KASEY CHAMPION

6

Class Usage

usePoint.cpp

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

Point pl (1, 2); // allocate a new Point on the Stack

Point p2(4, 6); // allocate a new Point on the Stack To allocate on the heap use the “new keyword

Point* pl = new Point(l, 2);

cout << "pl is: (" << pl.get_x() << ", my
cout << pl.get y() << ")" << endl;

cout << "p2 is: (" << pz.get_x() << M,
cout << p2Z.get y() << ")" << endl;

cout << "dist : " << pl.Distance (p2) << endl;

return 0;

CSE 374 AU 20 - KASEY CHAMPION 7

Constructors in C++

=A constructor (ctor) initializes a newly-instantiated object
A class can have multiple constructors that differ in parameters
Which one is invoked depends on how the object is instantiated

“\Written with the class name as the method name:

Point (const int x, const int vy);

C++ will automatically create a synthesized default constructor if you have no user-defined constructors
Takes no arguments and calls the default ctor on all non-"plain old data” (non-POD) member variables
Synthesized default ctor will fail if you have non-initialized const or reference data members

=4 different types of constructors

default constructor - takes zero arguments. If you don't define any constructors the compiler will generate one of these
for you (just like Java)

copy constructor - takes a single parameter which is a const reference(const T&) to another object of the same type,
and initializes the fields of the new object as a copy of the fields in the referenced object

user-defined constructors - initialize fields and take whatever arguments you specify

conversion constructors - implicit, take a single argument. If you want a single argument constructor that is not implicit
must use the keyword “explicit” like: explicit String(const char* raw);

Synthesized Default Constructor

SimplePoint.h
class SimplePoint {
public:
// no constructors declared!
int get x() const { return x ; } // inline member function
int get y() const { return vy ; } // inline member function
double Distance (const SimplePointé& p) const;
void SetLocation (int x, int vy);
private: SimplePoint.cpp
int x_; // data member #include "SimplePoint.h"
int y ; // data member
}; // class SimplePoint ... // definitions for Distance() and SetLocation ()

int main(int argc, char** argv) {
SimplePoint x; // invokes synthesized default constructor
return EXIT SUCCESS;

CSE 374 AU 20 - KASEY CHAMPION 9

Synthesized Default Constructor

=If you define any constructors, C++ assumes you have defined all the ones you intend to be
available and will not add any others

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {

X = X;
Y = Ys
}
void foo () {
SimplePoint x; // compiler error: 1if you define any
// ctors, C++ will NOT synthesize a
// default constructor for you.
SimplePoint v (1, 2); // works: 1invokes the 2-int-arguments

// constructor

Overloading Constructors

#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint () {
x = 0y

y_ =07

// constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {

X_:X,'
Y_ = Ys
}
void foo () {
SimplePoint x; // invokes the default constructor

SimplePoint y (1, 2); // invokes the 2-int-arguments ctor
SimplePoint a[3]; // invokes the default ctor 3 times

CSE 374 AU 20 - KASEY CHAMPION

Copy Constructors

=C++ has the notion of a copy constructor (cctor)
Used to create a new object as a copy of an existing object
Initializer lists can also be used in copy constructors
initializes a new bag of bits (new variable or parameter)
assignment (=) replaces an existing value with a new one

may need to clean up old state (free heap data?)

Point::Point (const int x, const int y) : x (x), vy (y) { }

// copy constructor
Point::Point (const Point& copyme) {

X = copyme.x ;
y = copyme.y ;

}

void foo () {
Point x(1, 2); // invokes the 2-int-arguments constructor
Point y(x); // invokes the copy constructor

Point z = y; // also invokes the copy constructor

Synthesized Copy Constructor

=If you don’t define your own copy constructor, C++ will synthesize one for you
It will do a shallow copy of all of the fields (i.e. member variables) of your class
Sometimes the right thing; sometimes the wrong thing

#include "SimplePoint.h"

. // definitions for Distance () and SetLocation/()
int main(int argc, char** argv) {

SimplePoint x;

SimplePoint y(x); // invokes synthesized copy constructor

return EXIT SUCCESS;
}

When Do Copies Happen?

*The copy constructor is invoked if:

You initialize an object from
another object of the same

type:

You pass a non-reference
object as a value parameter
to a function:

You return a non-reference

object value from a function:

// default ctor

// copy ctor
// copy ctor

Point x;
Point vy (x);
Point z = vy;

void foo (Point x) { ... }
Point vy; // default ctor
foo (y) ; // copy ctor
Point foo () {

Point vy; // default ctor

return y; // copy ctor

Initialization Lists

=C++ lets you optionally declare an initialization list as part of a constructor definition
Initializes fields according to parameters in the list
The following two are (nearly) identical:

Point::Point (const int x, const int y) {
X = X;
Y_ = ¥Yrs
std::cout << "Point constructed: (" << x << " /"
std::cout << y << ")" << std::endl;

// constructor with an initialization 1ist

Point::Point (const int x, const int y) : x (x), y (y)
std::cout << "Polnt constructed: (" << x << ", ";
std::cout << y << ") " << std::endl;

}

Initialization vs Construction

= Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering

Data members that don’t appear in the initialization list are default initialized/constructed before body is
executed

= Initialization preferred to assignment to avoid extra steps
Never mix the two styles

class Point3D {
public:
// constructor with 3 int arguments First, initialization list is applied.
Point3D(const int x, const int y, const int z) : y (y), X (x) {
z = z; Next, constructor body is executed.
}
private:
int x , v, z ; // data members
Y; // class Point3D

Destructors

»C++ has the notion of a destructor (dtor)
Like “free” in c. In fact, invokes free under the hood to clean up when freeing memory

Invoked automatically when a class instance is deleted, goes out of scope, etc. (even via exceptions or other
causes!)

Do not need to call destructors explicitly
Place to put your cleanup code - free any dynamic storage or other resources owned by the object
Standard C++ idiom for managing dynamic resources

Slogan: “Resource Acquisition Is Initialization” (RAI)

Point: :~Point () { // destructor
// do any cleanup needed when a Polint object goes away
// (nothing to do here since we have no dynamic resources)

Nonmember Functions

=“Nonmember functions” are just normal functions that happen to use some class
Called like a regular function instead of as a member of a class object instance
These do not have access to the class’ private members

=Useful nonmember functions often included as part of interface to a class
Declaration goes in header file, but outside of class definition

=A class can give a nonmember function (or class) access to its non-public members by declaring it as
a friend within its definition
Not a class member, but has access privileges as if it were
friend functions are usually unnecessary if your class includes appropriate “getter” public functions

class Complex {

friend std::istream& operator>>(std::istream& in, Complexé&
a;

Complex.cpp

std::istream& operator>>(std::istream& in, Complexé& a)

té);\‘.l[-.')ie;(ijhass COmplex {
}

Inheritance in C++

=Inheritance is the formal establishment of
hierarchical relationships between classes in
order to facilitate the sharing of behaviors

A parent-child “is-a” relationship between “

classes
A child (derived class) extends a parent (base class) Superclass Base Class
=Benefits: Subclass Derived Class
Code reuse

Children can automatically inherit code from parents
Polymorphism
Ability to redefine existing behavior but preserve the interface
Children can override the behavior of the parent
Others can make calls on objects without knowing which part of the inheritance
treeitisin
Extensibility
Children can add behavior

Inheritance Design Example: Stock Portfolio

=A portfolio represents a

person’s financial investments

Each asset has a cost (i.e. how much
was paid for it) and a market value (i.e.
how much it is worth)

The difference between the cost and market
value is the profit (or loss)
Different assets compute market value
in different ways
A stock that you own has a ticker symbol (e.g.

“GOO0CG"), a number of shares, share price paid,
and current share price

A dividend stock is a stock that also has dividend
payments

Cash is an asset that never incurs a profit or loss

symbol
total shares
total cost
current price

GetMarketValue ()
GetProfit ()
GetCost ()

Asset (abstract)

GetMarketValue ()
GetProfit ()

GetCost ()

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

amount

GetMarketValue ()

symbol
total shares
total cost_
current price

GetMarketValue ()
GetProfit ()
GetCost ()

Cash

amount _

GetMarketValue ()

DividendStock

symbol
total shares
total cost
current price
dividends__

GetMarketValue ()
GetProfit ()
GetCost ()

Class Derivation List

=Comma-separated list of classes to inherit from: "public: visible to all other classes
#include "BaseClass.h" sprotected: visible to current class
class Name : public BaseClass { and its derived classes
Ve sprivate: visible only to the current

class
Focus on single inheritance, but multiple inheritance possible

#include "BaseClass.h"

=Use protected for class members

#include "BaseClass2.h" only when:
class Name : public BaseClass, public BaseClass2 { Class is designed to be extended by derived
classes

bi Derived classes must have access but clients

=Almost always use “public” inheritance should not be allowed
Acts like extends does in Java

Any member that is non-private in the base class is the same in the
derived class; both interface and implementation inheritance

Except that constructors, destructors, copy constructor, and assignment operator are never
inherited

Inheritance Design Example: Stock Portfolio

DividendStock

symbol_ dividends_
total_ shares__ symbol
total cost total shares
— = total_cost_ GetMarketValue ()
current price .
_P _ current price GetProfit ()
GetMarketValue () GetMarketValue () GetCost ()
. GetProfit () ..
GetProfit () GetCost () PayDividend ()
GetCost ()

A derived class:
=sInherits the behavior and state (specification) of the base class
=Overrides some of the base class’ member functions (opt.)

=Extends the base class with new member functions, variables (opt.)

Polymorphism in C++

*"|n Java: PromisedType var = new ActualType ();
var is a reference (different term than C++ reference) to an object of ActualType on the Heap
ActualType must be the same class or a subclass of PromisedType

"I[n C++: PromisedType var p = new ActualType():;
var_p is a pointer to an object of ActualType on the Heap
ActualType must be the same or a derived class of PromisedType
(also works with references)

PromisedType defines the interface (i.e. what can be called on var_p), but ActualType may determine which
version gets invoked

Questions

CSE 374 AU 20 - KASEY CHAMPION 24

RAII

="Resource Acquisition is Initialization"

=Design pattern at the core of C++

=When you create an object, acquire resources
Create = constructor

Acquire = allocate (e.g. memory, files)

=\When the object is destroyed, release
resources

Destroy = destructor
Release = deallocate

=\When used correctly, makes code safer and
easier to read

char* return msg c() {
int size = strlen("hello") +
char* str = malloc(size);

strncpy (str, "hello", size);
return str;

1;

std::string return msg cpp() {
std::string str("hello");
return str;

using namespace std;

char* sl = return msg c();
cout << sl << endl;
string s2 = return msg cpp();

cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Compiler Optimization

*The compiler sometimes uses a “return by value optimization” or “move semantics”

to eliminate unnecessary copies
Sometimes you might not see a constructor get invoked when you might expect it

Point foo () {

Point vy; // default ctor

return y; // copy ctor? optimized?
}
Point x (1, 2); // two-ints—-argument ctor
Point y = Xx; // copy ctor
Point z = foo(); // copy ctor? optimized?

Namespaces

sEach namespace is a separate scope
Useful for avoiding symbol collisions!

*Namespace definition:

namespace name {
// declarations go here

}
Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents

Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)
This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

*Namespaces vs classes
They seems somewhat similar, but classes are not namespaces:

There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,
functions, etc.)
To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)

Unless you are using that namespace
You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

Const

«C++ introduces the “const” keyword which declares a value that cannot change

sconst int CURRENT_YEAR = 2020;

