
Lecture 21: C++ Continued…
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #21

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Stack vs Heap
▪Java

- Stack: cannot stack-allocate objects
- Heap: can only directly allocate pointers to objects, all objects are dynamically allocated in the heap

- new Thing(…) calls constructor, returns heap allocated pointer
- garbage collector frees allocated memory, outside of programmer responsibility

▪C
- Stack: can stack-allocate a struct, then initialize individual variables within stack as well, does not persist beyond single

function
- Heap: use malloc to dynamically allocate memory on the heap, must initialize data explicitly afterwards.

- Must free this memory exactly once later.
- Malloc returns untyped pointers.

▪C++
- Stack: can directly stack-allocate or call a constructor that allocates a pointer in the stack to object constructed.
- Heap: use of new keyword allocates space in heap for object, returns pointer to object which if stored in local variable

will be saved in the stack. Can also simultaneously allocate and initialize heap data EG: new int(42)
- Like C must deallocate dynamically allocated memory, but must use delete instead of free.

3CSE 374 AU 20 - KASEY CHAMPION

Allocating memory in C++

▪In C

int* arr = (int*) malloc(sizeof(int) * 100); // returns non-typed pointer

free(arr);

▪In C++, we have more modern syntax:
-Array allocation

int* arr = new int[100];

delete [] arr; // [] required to free array memory

-Non-array allocation

int* x = new int(4); // x stores the value 4

delete x;

4CSE 374 AU 20 - KASEY CHAMPION

new / delete

▪To allocate on the heap using C++, you
use the new keyword instead of
malloc() from stdlib.h
-You can use new to allocate an object (e.g. new

Point)

-You can use new to allocate a primitive type (e.g.
new int)

▪To deallocate a heap-allocated object or
primitive, use the delete keyword
instead of free() from stdlib.h
-Don’t mix and match!

- Never free() something allocated with new

- Never delete something allocated with malloc()

- Careful if you’re using a legacy C code library or module in C++

5CSE 374 AU 20 - KASEY CHAMPION

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

#include "Point.h"

// definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return EXIT_SUCCESS;
}

heappoint.cpp

Malloc vs New

 malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

6CSE 374 AU 20 - KASEY CHAMPION

Dynamically Allocated Arrays

▪To dynamically allocate an array:

type* name = new type[size];
-calls default (zero-argument) constructor for each element
-convenient if there’s a good default for initialization

▪To dynamically deallocate an array:
-Use delete[] name;
-It is an incorrect to use “delete name;” on an array

- The compiler probably won’t catch this, though (!) because it can’t always tell if name* was allocated with new type[size];
or new type;

- Especially inside a function where a pointer parameter could point to a single item or an array and there’s no way to tell which!

- Result of wrong delete is undefined behavior

7CSE 374 AU 20 - KASEY CHAMPION

Arrays Example (Primitives)

8CSE 374 AU 20 - KASEY CHAMPION

#include "Point.h"

int main() {
 int stack_int;
 int* heap_int = new int;
 int* heap_int_init = new int(12);

 int stack_arr[3];
 int* heap_arr = new int[3];

 int* heap_arr_init_val = new int[3]();
 int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

 ...

 delete heap_int; //
 delete heap_int_init; //
 delete heap_arr; //
 delete[] heap_arr_init_val; //

 return EXIT_SUCCESS;
}

arrays.cpp

Arrays Example (Objects)

9CSE 374 AU 20 - KASEY CHAMPION

arrays.cpp

#include "Point.h"

int main() {
 ...

 Point stack_pt(1, 2);
 Point* heap_pt = new Point(1, 2);

 Point* heap_pt_arr_err = new Point[2];

 Point* heap_pt_arr_init_lst = new Point[2]{{1, 2},
{3, 4}};

// C++11
 ...

 delete heap_pt;
 delete[] heap_pt_arr_init_lst;

 return EXIT_SUCCESS;
}

Pointers in C++
▪Work the same as in C, hooray!

▪A pointer is a variable containing an address
-Modifying the pointer doesn’t modify what it points to, but you can access/modify what it points to by

dereferencing

10CSE 374 AU 20 - KASEY CHAMPION

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;

 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y
 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;
}

References in C++

▪A reference is an alias for another variable
-Alias: another name that is bound to the aliased variable
-Mutating a reference is mutating the aliased variable
-Introduced in C++ as part of the language

11CSE 374 AU 20 - KASEY CHAMPION

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x

 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7

 z = y; // sets z (and x) to the value of y
 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;
}

Pass by Reference

C++ allows you to use real pass-by-reference
-Client passes in an argument with normal syntax

- Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

12CSE 374 AU 20 - KASEY CHAMPION

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;

 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

▪A stylistic choice, not mandated by the
C++ language

▪Google C++ style guide suggests:
- Input parameters:

- Either use values (for primitive types like int or
small structs/objects)

- Or use const references (for complex
struct/object instances)

- Output parameters:

- Use unchangeable pointers referencing
changeable data

- Ordering:

- List input parameters first, then output
parameters last

-In C all function arguments are copies

-pointer arguments pass a copy of the
address value, original values will be
unaffected by changes to parameter

Structs in C vs Classes in C++

▪In C, a struct can only contain data fields
-No methods and all fields are always accessible

▪In C++, struct and class are (nearly) the same!
-Both can have methods and member visibility (public/private/protected)

-Minor difference: members are default public in a struct and default private in a class

-structs need to allocate heap memory so object will persist

▪Common style convention:
-Use struct for simple bundles of data

-Use class for abstractions with data + functions

13CSE 374 AU 20 - KASEY CHAMPION

Classes in C++
▪Unlike C structs

- Class definition is part of interface and should go in .h file
- Private members still must be included in definition (!)

- Typically put member function definitions into companion .cpp file with
implementation details
- Common exception: setter and getter methods

- These files can also include non-member functions that use the class

▪Like java
- Fields & methods, static vs instance, constructors
- method overloading (functions, operators and constructors)

▪Not quite like Java
- access-modifier (eg private) syntax
- declaration separate from implementation (like C)
- funny constructor syntax, default parameters (eg, …=0)

▪Not at all like Java
- you can name files anything you want

- Typically a combination of Name.cpp and Name.h for class Name

- destructors and copy constructors
- virtual vs non-virtual

14CSE 374 AU 20 - KASEY CHAMPION

namespace mynamespace {
 class MyClass {
 private:
 type fieldOne;
 type fieldTwo;

 public:
 MyClass();
 MyClass(type, type);

 public:
 type functionOne() {
 // function definition
 }
 type functionTwo() {
 // function definition
 }
 };
}

MyClass.h

Defining Classes in C++

▪Class Definition (in a .h file)

15CSE 374 AU 20 - KASEY CHAMPION

class Name {
 public:
 // public member definitions & declarations go here

 private:
 // private member definitions & declarations go here
}; // close class Name

▪Class Member Definition (in a .cpp file)

▪Members can be functions (methods) or data (variables)

▪(1) define within the class definition OR (2) declare within the class definition and then
define elsewhere

returnType ClassName::MethodName(type1 param1, …, typeN paramN) {
 // body statements
}

Name.h

Name.cpp

Anatomy of C++ Class

16CSE 374 AU 20 - KASEY CHAMPION

Rectangle.h

Access Control

▪Access modifiers for members:
-public: accessible to all parts of the program

-private: accessible to the member functions of the class
- Private to class, not object instances

-protected: accessible to member functions of the class and any derived classes (subclasses – more to come,
later)

▪Reminders:
-Access modifiers apply to all members that follow until another access modifier is reached

-If no access modifier is specified, struct members default to public and class members default to private

17CSE 374 AU 20 - KASEY CHAMPION

Class Definition (Member declaration)

18CSE 374 AU 20 - KASEY CHAMPION

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(const int x, const int y); // member
function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H_

Point.h

Class Member Definition

19CSE 374 AU 20 - KASEY CHAMPION

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
 x_ = x;
 this->y_ = y; // "this->" is optional unless name conflicts
}

double Point::Distance(const Point& p) const {
 // We can access p’s x_ and y_ variables either through the
 // get_x(), get_y() accessor functions or the x_, y_ private
 // member variables directly, since we’re in a member
 // function of the same class.
 double distance = (x_ - p. get_x()) * (x_ - p.get_x());
 distance += (y_ - p.y_) * (y_ - p.y_);
 return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
 x_ = x;
 y_ = y;
}

Point.cpp

Class Usage

20CSE 374 AU 20 - KASEY CHAMPION

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
 Point p1(1, 2); // allocate a new Point on the Stack
 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return 0;
}

usePoint.cpp

To allocate on the heap use the “new” keyword
Point* p1 = new Point(1, 2);

Constructors in C++

▪A constructor (ctor) initializes a newly-instantiated object
- A class can have multiple constructors that differ in parameters

- Which one is invoked depends on how the object is instantiated

▪Written with the class name as the method name:

Point(const int x, const int y);
- C++ will automatically create a synthesized default constructor if you have no user-defined constructors

- Takes no arguments and calls the default ctor on all non-“plain old data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or reference data members

▪4 different types of constructors
- default constructor – takes zero arguments. If you don’t define any constructors the compiler will generate one of these

for you (just like Java)
- copy constructor – takes a single parameter which is a const reference(const T&) to another object of the same type,

and initializes the fields of the new object as a copy of the fields in the referenced object
- user-defined constructors – initialize fields and take whatever arguments you specify
- conversion constructors – implicit, take a single argument. If you want a single argument constructor that is not implicit

must use the keyword “explicit” like: explicit String(const char* raw);

21CSE 374 AU 20 - KASEY CHAMPION

Synthesized Default Constructor

22CSE 374 AU 20 - KASEY CHAMPION

class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(int x, int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return EXIT_SUCCESS;
}

SimplePoint.h

SimplePoint.cpp

Synthesized Default Constructor

▪If you define any constructors, C++ assumes you have defined all the ones you intend to be
available and will not add any others

23CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // compiler error: if you define any
 // ctors, C++ will NOT synthesize a
 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments
 // constructor
}

Overloading Constructors

24CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
 SimplePoint a[3]; // invokes the default ctor 3 times
}

Copy Constructors

▪C++ has the notion of a copy constructor (cctor)
-Used to create a new object as a copy of an existing object

-Initializer lists can also be used in copy constructors

- initializes a new bag of bits (new variable or parameter)

-assignment (=) replaces an existing value with a new one
- may need to clean up old state (free heap data?)

25CSE 374 AU 20 - KASEY CHAMPION

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor

 Point y(x); // invokes the copy constructor
 Point z = y; // also invokes the copy constructor
}

Synthesized Copy Constructor

▪If you don’t define your own copy constructor, C++ will synthesize one for you
-It will do a shallow copy of all of the fields (i.e. member variables) of your class

-Sometimes the right thing; sometimes the wrong thing

26CSE 374 AU 20 - KASEY CHAMPION

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return EXIT_SUCCESS;
}

When Do Copies Happen?

▪The copy constructor is invoked if:
-You initialize an object from

another object of the same
type:

-You pass a non-reference
object as a value parameter
to a function:

-You return a non-reference
object value from a function:

27CSE 374 AU 20 - KASEY CHAMPION

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

void foo(Point x) { ... }

Point y; // default ctor
foo(y); // copy ctor

Point foo() {
 Point y; // default ctor
 return y; // copy ctor
}

Initialization Lists

▪C++ lets you optionally declare an initialization list as part of a constructor definition
-Initializes fields according to parameters in the list

-The following two are (nearly) identical:

28CSE 374 AU 20 - KASEY CHAMPION

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Initialization vs Construction

▪ Data members in initializer list are initialized in the order they are defined in the class, not
by the initialization list ordering
-Data members that don’t appear in the initialization list are default initialized/constructed before body is

executed

▪ Initialization preferred to assignment to avoid extra steps
-Never mix the two styles

29CSE 374 AU 20 - KASEY CHAMPION

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

Destructors

▪C++ has the notion of a destructor (dtor)
-Like “free” in c. In fact, invokes free under the hood to clean up when freeing memory

-Invoked automatically when a class instance is deleted, goes out of scope, etc. (even via exceptions or other
causes!)
- Do not need to call destructors explicitly

-Place to put your cleanup code – free any dynamic storage or other resources owned by the object

-Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAII)

30CSE 374 AU 20 - KASEY CHAMPION

Point::~Point() { // destructor
 // do any cleanup needed when a Point object goes away
 // (nothing to do here since we have no dynamic resources)
}

Nonmember Functions

▪“Nonmember functions” are just normal functions that happen to use some class
- Called like a regular function instead of as a member of a class object instance

- These do not have access to the class’ private members

▪Useful nonmember functions often included as part of interface to a class
- Declaration goes in header file, but outside of class definition

▪A class can give a nonmember function (or class) access to its non-public members by declaring it as
a friend within its definition
- Not a class member, but has access privileges as if it were

- friend functions are usually unnecessary if your class includes appropriate “getter” public functions

31CSE 374 AU 20 - KASEY CHAMPION

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex&
a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a)
{
 ...
}

Complex.h

Complex.cpp

Questions

32CSE 374 AU 20 - KASEY CHAMPION

RAII

▪"Resource Acquisition is Initialization"

▪Design pattern at the core of C++

▪When you create an object, acquire resources
-Create = constructor

-Acquire = allocate (e.g. memory, files)

▪When the object is destroyed, release
resources
-Destroy = destructor

-Release = deallocate

▪When used correctly, makes code safer and
easier to read

33CSE 374 AU 20 - KASEY CHAMPION

char* return_msg_c() {
 int size = strlen("hello") + 1;
 char* str = malloc(size);
 strncpy(str, "hello", size);
 return str;
}

std::string return_msg_cpp() {
 std::string str("hello");
 return str;
}

using namespace std;
char* s1 = return_msg_c();
cout << s1 << endl;
string s2 = return_msg_cpp();
cout << s2 << endl;

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Compiler Optimization

▪The compiler sometimes uses a “return by value optimization” or “move semantics”
to eliminate unnecessary copies
-Sometimes you might not see a constructor get invoked when you might expect it

34CSE 374 AU 20 - KASEY CHAMPION

Point foo() {
 Point y; // default ctor
 return y; // copy ctor? optimized?
}

Point x(1, 2); // two-ints-argument ctor
Point y = x; // copy ctor
Point z = foo(); // copy ctor? optimized?

Namespaces

▪Each namespace is a separate scope
- Useful for avoiding symbol collisions!

▪Namespace definition:
-namespace name {
 // declarations go here
}

- Doesn’t end with a semi-colon and doesn’t add to the indentation of its contents
- Creates a new namespace name if it did not exist, otherwise adds to the existing namespace (!)

- This means that components (e.g. classes, functions) of a namespace can be defined in multiple source files

▪Namespaces vs classes
-They seems somewhat similar, but classes are not namespaces:
- There are no instances/objects of a namespace; a namespace is just a group of logically-related things (classes,

functions, etc.)
- To access a member of a namespace, you must use the fully qualified name (i.e. nsp_name::member)

- Unless you are using that namespace

- You only used the fully qualified name of a class member when you are defining it outside of the scope of the class definition

35CSE 374 AU 20 - KASEY CHAMPION

Const

▪C++ introduces the “const” keyword which declares a value that cannot change

▪const int CURRENT_YEAR = 2020;

36CSE 374 AU 20 - KASEY CHAMPION

