
Lecture 20: C++
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #20

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia

▪HW 3 posted Friday -> Extra credit due date Wednesday Nov 25th @ 9pm

▪End of quarter due date Wednesday December 16th @ 9pm

2CSE 374 AU 20 - KASEY CHAMPION

Meet C++

▪C++ is a general-purpose programming language created as an extension of the C
programming language
-Sometimes referred to “C with Classes”

-Includes object-oriented, generic and functional features in addittion to facilities for low-level memory
manipulation

-Designed with a bias towards system programming and embedded, resource-constrained software

▪C is (roughly) a subset of C++, a C program can be compiled as a C++ program
-You can still use printf – but bad style in ordinary C++ code

-Can mix C and C++ idioms if needed to work with existing code, but avoid mixing if you can

▪C++ makes it easy to hide a significant amount of complexity
-It’s powerful, but really dangerous

-Once you mix everything together (templates, operator overloading, method overloading, generics, multiple
inheritance), it can get really hard to know what’s actually happening!

3CSE 374 AU 20 - KASEY CHAMPION

C++ Resources

▪Best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th edition

▪Good Online Source: cplusplus.com

▪Serious C++ programmers should read:
- Effective C++, Meyers, 3rd Edition

- Best practices for standard C++

-Effective Modern C++,. Meyers, O’Reilly
- Additional ”best practices” for C++11/C++14

4CSE 374 AU 20 - KASEY CHAMPION

Differences between C and C++

▪File names end with *.cc or *.cpp or *.cxx
-Still use *.h for header files

▪Use a different compiler: g++ instead of gcc

▪C++ uses C preprocessor but libraries are different
-#include <cstdlib>

-basically the same as <stdlib.h>

5CSE 374 AU 20 - KASEY CHAMPION

Hello World

6CSE 374 AU 20 - KASEY CHAMPION

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 printf("Hello, World!\n");
 return EXIT_SUCCESS;
}

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

helloworld.c

Hello World C++ iostream

7CSE 374 AU 20 - KASEY CHAMPION

•iostream is part of the C++ standard library
• Note: you don’t write “.h” when you include C++ standard library headers

• But you do for local headers (e.g. #include "ll.h")

• iostream declares stream object instances in the “std” namespace
 e.g. std::cin, std::cout, std::cerr

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

I/O in C++
•“<<” is an operator defined by the C++
language

• Defined in C as well: usually it bit-shifts
integers (in C/C++)

• C++ allows classes and functions to
overload operators!

• Here, the ostream class overloads “<<”

▪i.e. it defines different member functions
(methods) that are invoked when an ostream
is the left-hand side of the << operator

▪Std library include a cout and a cin function

▪Operators >> and << act like shell redirection

▪Operators >> and << take left and right
operands and return a stream

▪use namespace std or

▪use std::cout & std::cin

8CSE 374 AU 20 - KASEY CHAMPION

using namespace std

cout << “what is your name”;
string name;
cin >> name;

cout << ”when were you born?”;
int year;
cin >> year;

Hello World C++ cstdlib

9CSE 374 AU 20 - KASEY CHAMPION

•cstdlib is the C standard library’s stdlib.h
• Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>
We include it here for EXIT_SUCCESS, as usual

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

Hello World C++ std::cout

10CSE 374 AU 20 - KASEY CHAMPION

•std::cout is the “cout” object instance
declared by iostream, living within the “std”
namespace
• C++’s name for stdout
• std:cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

• Used to format and write output to the console
• The entire standard library is in the namespace std

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

•Next, another member function on std::cout is invoked to handle << with RHS std::endl
• std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it is invoked on and then flushes the ostream ’s buffer
 This enforces that something is printed to the console at this point

http://www.cplusplus.com/reference/ostream/ostream/

Cout and Types

11CSE 374 AU 20 - KASEY CHAMPION

•C++ distinguishes between objects and
primitive types

• These include the familiar ones from C:
char, short, int, long, float,
double, etc.

• C++ also defines bool as a primitive type
(woo-hoo!)
• Use it!

•ostream has many different methods to
handle <<

• The functions differ in the type of the
right-hand side (RHS) of <<

e.g. if you do std::cout << "foo"; , then
C++ invokes cout’s function to handle << with
RHS char*

Hello World C++ ostrem

12CSE 374 AU 20 - KASEY CHAMPION

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

•ostream has many different methods to
handle <<

• The functions differ in the type of the
right-hand side (RHS) of <<

e.g. if you do std::cout << "foo"; , then
C++ invokes cout’s function to handle << with
RHS char*

•The ostream class’ member
functions that handle << return a
reference to themselves

• When std::cout << "Hello,
World!"; is evaluated:
• A member function of the std::cout

object is invoked
• It buffers the string "Hello, World!"

for the console
And it returns a reference to std::cout

Refined Hello World

13CSE 374 AU 20 - KASEY CHAMPION

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

C++’s standard library has a
std::string class

• Include the string header to use it
• Seems to be automatically included in
iostream on CSE Linux environment
(C++11) – but include it explicitly anyway
if you use it

• http://www.cplusplus.com/reference
/string/

http://www.cplusplus.com/reference/string/
http://www.cplusplus.com/reference/string/

Refined Hello World

14CSE 374 AU 20 - KASEY CHAMPION

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

•The using keyword introduces a
namespace (or part of) into the current
region
• using namespace std; imports all

names from std::
using std::cout; imports only
std::cout
(used as cout)

•Benefits of
• We can now refer to std::string as
string, std::cout as cout, and
std::endl as endl

using namespace std;

Namespaces

▪Groups code logically

▪can reuse names for each
namespace

▪Disambiguate with :: syntax

▪Can avoid using the prefix with
-using name space foo
-doSomething(3)

▪if you are using a namespace in a
header, you must also use the name
space in the source code

15CSE 374 AU 20 - KASEY CHAMPION

namespace foo {
 int doSomething(int x);
}
name space bar {
 int doSomething(int x);
}
int main() {
 foo::doSomething(3);
 bar::doSomething(3);
}

Refined Hello World

16CSE 374 AU 20 - KASEY CHAMPION

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

•Here we are instantiating a
std::string object on the stack
(an ordinary local variable)

• Passing the C string "Hello,
World!" to its constructor method

hello is deallocated (and its destructor
invoked) when main returns

•The C++ string library also overloads the << operator
• Defines a function (not an object method) that is invoked when the left hand side is
ostream and the right hand side is std::string

http://www.cplusplus.com/reference/string/string/operator<</

http://www.cplusplus.com/reference/string/string/operator%3c%3c/

String Manipulation

17CSE 374 AU 20 - KASEY CHAMPION

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

String Concatenation
The string class overloads the “+”
operator
• Creates and returns a new string that

is the concatenation of the left and
right

String Assignment
The string class overloads the “=”
operator
• Copies the right and replaces the

string’s contents with it•This statement is complex!
• First “+” creates a string that is the concatenation of hello’s current contents and ", World!"
• Then “=” creates a copy of the concatenation to store in hello
• Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));

Questions

18CSE 374 AU 20 - KASEY CHAMPION

