
Lecture 19: Git!
CSE 374: Intermediate 
Programming Concepts and 
Tools

1



QUICK RECAP

2CSE 374 AU 20 - KASEY CHAMPION



Some “git” commands

▪ git init
- Create a new empty git repo or convert an 

existing folder to a git repo

▪ git add
- Preparing edited files to be saved (committed) to 

a repo

▪ git commit
- Records (saves) changes to a repo
- Accompanied by a short descriptive message

▪ git push
- Update the remote copy of the repo with the 

local changes and commits

3CSE 374 AU 20 - KASEY CHAMPION



Staging and committing overview

4CSE 374 AU 20 - KASEY CHAMPION

git repo
Working changes Staging area

git add . git commit –m “message”

git init



Inspecting a repository

▪ git status
- Lists the files which you have changed 

but not yet committed
- Working directory

- Staging area

- Indicates how many commits have 
made but not yet pushed

▪ git log
- Shows the commit history
- git log –graph --oneline

- Shows branch info as a graph 

5CSE 374 AU 20 - KASEY CHAMPION



 

6CSE 374 AU 20 - KASEY CHAMPION

Working with remote



git commands for interaction with remote

▪ git clone
- Cloning is the process of creating a working copy of the remote or local repository by passing the following 

command. 

- git clone username@git_server_hostname:/path_of_repository

▪ git pull
- If we have already cloned the repository and need to update local (only code) respect to the remote server

- git pull origin main

▪ git fetch
- Fetching is the process of updating (only git information) the local git structure and information from remote 

repository

- git fetch

7CSE 374 AU 20 - KASEY CHAMPION



Updating changes using pull 

8CSE 374 AU 20 - KASEY CHAMPION

git pull



What’s next!

▪Branching, checkout

▪Merging, Merge (Pull) Requests

▪Conflicts

▪ Interacting with a Git Server (GitHub / GitLab)

9CSE 374 AU 20 - KASEY CHAMPION



Skipping files using .gitignore

▪ As a recap, generally we should not have 
these files in a git repo:
- Object files (i.e. .class files, .o files) and executables

- Huge media files (e.g. videos)

- Credentials and system files (e.g. .DS_Store in Mac)

▪ Its tedious to mention all the files you want to 
add into a repo every time you add your 
changes (and ensure you skip the others)

▪ To skip above files you can create a file in the 
root of the git repo folder called .gitignore

▪ This file should contain patterns in file names 
you would like to skip being added

▪ https://github.com/github/gitignore

10CSE 374 AU 20 - KASEY CHAMPION

https://github.com/github/gitignore


Working with a Git server GitHub
11CSE 374 AU 20 - KASEY CHAMPION



GitHub profile

12CSE 374 AU 20 - KASEY CHAMPION



Creating a new repo on GitHub

13CSE 374 AU 20 - KASEY CHAMPION



Creating a new repo on GitHub

14CSE 374 AU 20 - KASEY CHAMPION



Creating a new repo on GitHub

15CSE 374 AU 20 - KASEY CHAMPION



Adding local files to the GitHub server

16CSE 374 AU 20 - KASEY CHAMPION



Checking the changes on GitHub

17CSE 374 AU 20 - KASEY CHAMPION



Branching
18CSE 374 AU 20 - KASEY CHAMPION



▪ 3 Collaborators

▪ Kasey makes a change and updates the 
repo (git push)

▪ Kalyani gets Kasey’s changes (git pull), 
edits some files and updates the repo (git 
push)

▪ Kushal gets the latest changes that include 
both Kasey and Kalyani’s changes (git pull)

▪ This goes on…

19

Collaboration - the ideal case

CSE 374 AU 20 - KASEY CHAMPION

Ku

Kl

Ky

…



But …

20CSE 374 AU 20 - KASEY CHAMPION



▪ 3 Collaborators

▪ Kasey makes a change and updates the 
repo

▪ Kalyani and Kushal get Kasey’s changes, 
edit some files and Kalyani updates the 
repo while Kushal is still working on some 
edits

▪ And here you see different people having 
different version histories

21

Collaboration - the reality

CSE 374 AU 20 - KASEY CHAMPION

Ku

…

Kl

Ky



Error!!

22CSE 374 AU 20 - KASEY CHAMPION



Error!!

23CSE 374 AU 20 - KASEY CHAMPION



24CSE 374 AU 20 - KASEY CHAMPION



Git Branches

▪ The scenario mentioned in the previous 
slides would be tough to solve if we used a 
single history across all collaborators.

▪ Instead you can start your own history at any 
point by “branching” out of the main history 
for a repo

▪ The master / main branch which is central 
history and hence the source of truth for the 
whole project

▪ We create new version histories based on 
the main branch and give each of these a 
branch name

25CSE 374 AU 20 - KASEY CHAMPION

Ku

…

Kl

Ky

dev-kushal

master



Git Branches

▪ Kushal’s improved workflow using branches!

▪ Kushal creates a new branch called 
dev-kushal when she starts working

- git branch dev-kushal

- git checkout dev-kushal

OR
- git checkout –b dev-kushal

▪ Now she makes commits on this branch until 
she is ready to update master

26CSE 374 AU 20 - KASEY CHAMPION

Ku

…

Kl

Ky

dev-kushal

master



Git Merge

▪ After Kushal is done with her work, she 
would like the changes from her branch 
dev-kushal be reflected in the master 
branch

▪ Steps:
- git checkout master

- git merge dev-Kushal

▪ If there are no changes that are made in the 
same lines by Kalyani and Kushal there are no 
conflicting differences, and the merge is good 
to go

▪ If not, WE HAVE A MERGE CONFLICT!

▪ Note: this is not the only workflow used for merging

27CSE 374 AU 20 - KASEY CHAMPION

Ku

…

Kl

Ky

dev-kushal

master

M



PULL before you start working!!

28CSE 374 AU 20 - KASEY CHAMPION



29CSE 374 AU 20 - KASEY CHAMPION



Merge conflicts

30CSE 374 AU 20 - KASEY CHAMPION

▪ Merge conflicts happen when you are merging two branches that have a diff on the same 
line(s) of some file(s) in a repo

▪ When running merge we run into an error in such a scenario



Looking for the conflict

31CSE 374 AU 20 - KASEY CHAMPION



Resolving the conflict

32CSE 374 AU 20 - KASEY CHAMPION



Checking the status

33CSE 374 AU 20 - KASEY CHAMPION



Adding resolved file and saving

34CSE 374 AU 20 - KASEY CHAMPION



Conflict resolved!!

35CSE 374 AU 20 - KASEY CHAMPION



Merge (Pull) Requests

▪ This was nice to know but we generally do not merge branches into master locally

▪ We use a Git server – GitHub / GitLab – to create a request to merge a feature branch into 
master

▪ We must ensure that everyone on the project agrees to what is present in the master 
branch as this is our source of truth that everyone shares

▪ The workflow is as follows:
- Create a new branch

- Add and commit changes to the branch and push it to GitHub

- Create a Pull Request on GitHub

- Other collaborators look at the PR and leave their feedback (this is generally called a Code Review)

- Fix issues and then merge

36CSE 374 AU 20 - KASEY CHAMPION



Sample Pull Request

37CSE 374 AU 20 - KASEY CHAMPION



Working with branches & more DEMO
38CSE 374 AU 20 - KASEY CHAMPION



39CSE 374 AU 20 - KASEY CHAMPION



Useful resources

▪ Try Git (resources and tutorial)

▪ The Git Cheat Sheet

▪ Stack Overflow’s definitive guide for beginners

▪ When you are terribly stuck with git
- DO NOT PANIC! Even experienced developers get stuck with git issues

- https://ohshitgit.com/

- https://stackoverflow.com/questions/tagged/git

40CSE 374 AU 20 - KASEY CHAMPION

https://try.github.io/
https://education.github.com/git-cheat-sheet-education.pdf
https://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://ohshitgit.com/
https://stackoverflow.com/questions/tagged/git

