
Lecture 15: Debugging in C
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #15

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia
Reminder: Midpoint Deadline Friday November 6th at 9pm PST

-Will post grades to canvas sometime the week after

2CSE 374 AU 20 - KASEY CHAMPION

What is a Bug?

▪A bug is a difference between the design of a program and its implementation
-Definition based on Ko & Meyers (2004)

▪We expected something different from what is happening

▪Examples of bugs
-Expected factorial(5) to be 120, but it returned 0

-Expected program to finish successfully, but crashed and printed "segmentation fault"

-Expected normal output to be printed, but instead printed strange symbols

3CSE 374 AU 20 - KASEY CHAMPION

http://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf

Debugging techniques

▪Comment out (or delete) code
-tests to determine whether removed code was source of problem

▪Test one function at a time

▪Add print statements
-Check if certain code is reachable

-check current state of variables

▪test the edges
-code often breaks at the beginning or end of the loop, the entry or exit of a function <- double check logic here

-double check your logic in the odd/ rare exceptional case

4CSE 374 AU 20 - KASEY CHAMPION

Debugging Basics

Debugging strategies look like:

▪Describe a difference between expected and actual behavior

▪Hypothesize possible causes

▪Investigate possible causes (if not found, go to step 2)

▪Fix the code which was causing the bug

▪Vast majority of the time spent in steps 2 & 3

5CSE 374 AU 20 - KASEY CHAMPION

Hypothesize

Now, let's look at the code for factorial()

Select all the places where the error could be coming from

▪The if statement's "then" branch

▪The if statement's "else" branch

▪Somewhere else

6CSE 374 AU 20 - KASEY CHAMPION

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

Investigate

Let's investigate the base case and recursive case
-Base case is the "if then" branch

-Recursive case is the "else" branch

7CSE 374 AU 20 - KASEY CHAMPION

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 ???

Recursive factorial(1) 1! = 1 1 ???

Recursive factorial(2) 2! = 1 * 2 2 ???

Recursive factorial(3) 3! = 1 * 2 * 3 6 ???

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

Investigate

▪One way to investigate is to write code to
test different inputs

▪If we do this, we find that the base case has
a problem

8CSE 374 AU 20 - KASEY CHAMPION

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 0

Recursive factorial(1) 1! = 1 1 0

Recursive factorial(2) 2! = 1 * 2 2 0

Recursive factorial(3) 3! = 1 * 2 * 3 6 0

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

Fix

9CSE 374 AU 20 - KASEY CHAMPION

int factorial(int x) {
 if (x == 0) {
 return x;
 } else {
 return x * factorial(x-1);
 }
}

int factorial(int x) {
 if (x == 0) {
 return 1;
 } else {
 return x * factorial(x-1);
 }
}

Case Input Math Equivalent Expected Actual

Base factorial(0) 0! = 1 1 1

Recursive factorial(1) 1! = 1 1 1

Recursive factorial(2) 2! = 1 * 2 2 2

Recursive factorial(3) 3! = 1 * 2 * 3 6 6

C Debugger

▪A debugger is a tool that lets you stop running programs, inspect values etc…
-instead of relying on changing code (commenting out, printf) interactively examine variable values, pause and

progress set-by-step

-don’t expect the debugger to do the work, use it as a tool to test theories

-Most modern IDEs have built in debugging functionality

▪‘gdb’ -> gnu debugger, standard part of linux development, supports many lan gyages
-techniques are the same as in most debugging tools

-can examine a running file

-can also examine core files of previous crashed programs

▪Want to know which line we crashed at (backtrace)

▪Inspect variables during run time

▪Want to know which functions were called to get to this point (backtrace)

10CSE 374 AU 20 - KASEY CHAMPION

Meet gdb

▪Compile code with ‘-g’ flag (saves human
readable info)

▪Open program with gdb <executable file>

▪start or restart the program: run <program
args>
- quit the program: kill

- quit gdb: quit

▪Reference information: help
-Most commands have short abbreviations

- bt = backtrace

- n = next

- s = step

- q = quit

-<return> often repeats the last command

11CSE 374 AU 20 - KASEY CHAMPION

12CSE 374 AU 20 - KASEY CHAMPIONhttps://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

Useful GDB Commands

▪bt – stack backtrace

▪up, down – change current stack frame

▪list – display source code (list n, list <function
name>)

▪print expression – evaluate and print expression

▪display expression
-re-evaluate and print expression every time execution

pauses

-undisplay – remove an expression from the recurring list

▪info locals – print all locals (but not parameters)

▪x (examine) – look at blocks of memory in
various formats

13CSE 374 AU 20 - KASEY CHAMPION

If we get a segmentation fault:
1. gdb ./myprogram

2. Type "run" into GDB

3. When you get a segfault, type "backtrace"
or "bt"

4. Look at the line numbers from the
backtrace, starting from the top

Breakpoints

temporarily stop program running at
given points

-look at values in variables

-test conditions

-break function (or line-number)

-conditional breakpoints
- to skip a bunch of iterations

- to do assertion checking

14CSE 374 AU 20 - KASEY CHAMPION

▪break – sets breakpoint
- break <function name> | <line number> | <file>:<line number>

▪info break – print table of currently set breakpoints

▪clear – remove breakpoints

▪disable/enable temporarily turn breakpoints off/on

▪continue – resume execution to next breakpoint or
end of program

▪step - execute next source line

▪next – execute next source line, but treat function
calls as a single statement and don’t “step in”

▪finish – execute to the conclusion of the current
function
- how to recover if you meant “next” instead of “step”

gdb demo
15CSE 374 AU 20 - KASEY CHAMPION

reverse.c

16CSE 374 AU 20 - KASEY CHAMPION

Output is an empty C string, zero
characters followed by a null
terminator

Testing
Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works”
– Naive 14Xers

▪Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

1. Isolate

2. Break your code into small modules

3. Build in increments

4. Make a plan from simplest to most complex cases

5. Test as you go

6. As your code grows, so should your tests

CSE 373 SP 18 - KASEY CHAMPION17

Types of Tests

▪Black Box
-Behavior only – ADT requirements

-From an outside point of view

-Does your code uphold its contracts with its users?

-Performance/efficiency

▪White Box
-Includes an understanding of the implementation

-Written by the author as they develop their code

-Break apart requirements into smaller steps

-“unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHAMPION18

What to test?

Expected behavior
-The main use case scenario
-Does your code do what it should given friendly conditions?

Forbidden Input
-What are all the ways the user can mess up?

Empty/Null
-Protect yourself!
-How do things get started?

Boundary/Edge Cases
-First

- last

Scale
-Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION19

Tips for testing

▪You cannot test every possible input, parameter value, etc.
-Think of a limited set of tests likely to expose bugs.

▪Think about boundary cases
-Positive; zero; negative numbers

-Right at the edge of an array or collection's size

▪Think about empty cases and error cases
-0, -1, null; an empty list or array

▪test behavior in combination
-Maybe add usually works, but fails after you call remove
-Make multiple calls; maybe size fails the second time only

Appendix

21CSE 374 AU 20 - KASEY CHAMPION

