- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #15
.‘v:-'..,x'

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 1 5 : D e b u ggi n g i n C Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

Reminder: Midpoint Deadline Friday November 6" at 9pm PST
Will post grades to canvas sometime the week after

What is a Bug?

=A bug is a difference between the design of a program and its implementation
Definition based on Ko & Meyers (2004)

“We expected something different from what is happening

=Examples of bugs
Expected factorial(5) to be 120, but it returned O

Expected program to finish successfully, but crashed and printed "segmentation fault"
Expected normal output to be printed, but instead printed strange symbols

http://faculty.washington.edu/ajko/papers/Ko2004SoftwareErrorsFramework.pdf

Debugging techniques

=Comment out (or delete) code
tests to determine whether removed code was source of problem

=Test one function at a time

*Add print statements
Check if certain code is reachable
check current state of variables

=test the edges
code often breaks at the beginning or end of the loop, the entry or exit of a function <- double check logic here
double check your logic in the odd/ rare exceptional case

Debugging Basics

Debugging strategies look like:

=Describe a difference between expected and actual behavior
*Hypothesize possible causes

"Investigate possible causes (if not found, go to step 2)

=Fix the code which was causing the bug

*Vast majority of the time spent in steps 2 & 3

Hypothesize

Now, let's look at the code for factorial()

Select all the places where the error could be coming from
=The if statement's "then" branch

=The if statement's "else" branch

Somewhere else

int factorial (int x) {
if (x == 0) {
return x;
} else {
return x * factorial (x-1);

}

Investigate

Let's investigate the base case and recursive case
Base case is the "if then" branch

Recursive case is the "else" branch

Case Input Math Equivalent
Base factorial(0) ! =1
Recursive factorial(l) 1! =1

Recursive factorial(2) 2! =1 % 2

Recursive factorial(3)

int factorial (int Xx)

if (x == 0) {
return Xx;
} else {

{

return x * factorial (x-1);

Expected Actual
1 277
1 222
2 227
6 277

Investigate

*One way to investigate is to write code to
test different inputs

*|f we do this, we find that the base case has

a problem

Case

Base

Recursive

Recursive

Recursive

Input

factorial(0)
factorial(l)
factorial(2)

factorial(3)

Math Equivalent

ol =1
1! =1
2 =1 % 2

int factorial (int x) {
if (x == 0) A
return Xx;
} else {
return x * factorial (x-1);

}

Expected Actual

1 0
1 0
5 0
6 0

Fix

int factorial (int x) {

1f (x == 0) {
— et
} else {

return x * factorial (x-1);

Case Input Math Equivalent
Base factorial(0) ! =1
Recursive factorial(l) 1! =1
Recursive factorial(2) 2! = 1 %
Recursive factorial(3) 3! =1 x 2 % 3

int factorial (int x) {
1f (x == 0) {
return 1;
} else {
return x * factorial (x-1);

Expected Actual
1 1
1 1
o 2
6 6

C Debugger

*A debugger is a tool that lets you stop running programs, inspect values etc...

instead of relying on changing code (commenting out, printf) interactively examine variable values, pause and
progress set-by-step

don't expect the debugger to do the work, use it as a tool to test theories
Most modern IDEs have built in debugging functionality

='gdb’ -> gnu debugger, standard part of linux development, supports many lan gyages
techniques are the same as in most debugging tools
can examine a running file
can also examine core files of previous crashed programs

=\\Want to know which line we crashed at (backtrace)
=*Inspect variables during run time

“Want to know which functions were called to get to this point (backtrace)

Meet gdb

Breakpoint 1, factorial (x=10) at factorial.c:18

18 if (x = 0) {
. . ‘_ ’ (gdb) n
“Compile code with -g’ flag (saves human (o e
readable info) (gdb) n
. Breakpoint 1, factorial (x=9) at factorial.c:
=Open program with gdb <executable file> = it (ximm @) €
[(gdb) n
sstart or restart the program: run <program e e
args> : : .
. . Breakpoint 1, factorial (x=8) at factorial.c:
quit the program: kill 18 if (x == @) {
. . (gdb) n
OIUIt 8db C]Ult 21 return x * factorial(x-1);
[(gdb) n
.Reference |nf0rmat|0n: help Breakpoint 1, factorial (x=7) at factorial.c:
Most commands have short abbreviations %edb) o=
(g n
bt = backtrace 21 return x * factorial(x-1);
n = next ((gdb) n
s = step Breakpoint 1, factorial (x=6) at factorial.c:

(gdb) B

<return> often repeats the last command

G’DB QUICK REFERENCE GDB Version 5

Essential Commands

gdb program [core] debug program [using coredump core]

b [ﬁle :]function

run [arglist]
bt

P expr

c

n

s

Starting GDB

gdb
gdb program
gdb program core

gdb --help

Stopping GDB

quit
INTERRUPT

Getting Help

help
help class

help command

set breakpoint at function [in ﬁle]

start your program [with arglist]
backtrace: display program stack
display the value of an expression
continue running your program

next line, stepping over function calls
next line, stepping into function calls

start GDB, with no debugging files

begin debugging program

debug coredump core produced by
program

describe command line options

exit GDB; also q or EOF (eg C-d)
(eg C-c) terminate current command, or
send to running process

list classes of commands
one-line descriptions for commands in

class
describe command

Executing your Program

run arglist

run start your program with current argument
list

run ... <inf >outf start your program with input, output
redirected

kill kill running program

start your program with arglist

Breakpoints and Watchpoints

break [ﬁle:]line
b [file:]line
break [file: |func
break +offset

break -offset
break *addr
break

break ... if expr

cond n [ezp'r]

tbreak ...

rbreak [ﬁle :] regex

watch expr
catch event

info break
info watch

clear

clear [ﬁle:]fun
clear |[file:]line
delete [n]

disable [n]
enable [n]

enable once [n]
enable del [n]

ignore n count

commands n
[silent]
command-list

and

set breakpoint at line number [in ﬁle]
eg: break main.c:37

set breakpoint at func [in ﬁle]
set break at offset lines from current stop

set breakpoint at address addr
set breakpoint at next instruction
break conditionally on nonzero ezpr

new conditional expression on breakpoint
n; make unconditional if no ezpr

temporary break; disable when reached

break on all functions matching regex [in
ﬁle]

set a watchpoint for expression ezpr

break at event, which may be catch,

throw, exec, fork, vfork, load, or
unload.

show defined breakpoints
show defined watchpoints

delete breakpoints at next instruction
delete breakpoints at entry to fun()
delete breakpoints on source line

delete breakpoints [or breakpoint n]

disable breakpoints [or breakpoint n]
enable breakpoints [or breakpoint 'n.]

enable breakpoints [or breakpoint 'n.];
disable again when reached

enable breakpoints [or breakpoint n];
delete when reached

ignore breakpoint n, count times

execute GDB command-list every time
breakpoint n is reached. [silent

suppresses default display]

ond nf rommand_lict

https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

Execution Control

continue [count]

c [count]

step [count]
s [count]
stepi [count]
si [count]

next [count]
n [count]

nexti [count]
ni [count]

until [location]
finish
return [emp'r]

signal num
jump line
jump *address
set var=expr

Display
print [/f] [ea:pr]
p (/1] [eapr]

HhOW®ccdo e AN

call [/f] expr
X [/ Nuf] expr

N

continue running; if count specified, ignore
this breakpoint next count times

execute until another line reached; repeat
count times if specified

step by machine instructions rather than
source lines

execute next line, including any function
calls

next machine instruction rather than
source line

run until next instruction (or location)
run until selected stack frame returns

pop selected stack frame without
executing [setting return value]

resume execution with signal s (none if 0)

resume execution at specified line number
or address

evaluate ezpr without displaying it; use
for altering program variables

show value of ezpr [or last value $]
according to format f:

hexadecimal

signed decimal

unsigned decimal

octal

binary

address, absolute and relative
character

floating point

like print but does not display void

examine memory at address expr; optional
format spec follows slash
count of how many units to display

https://courses.cs.washington.edu/courses/cse374/19sp/refcard.pdf

Useful GDB Commands

bt - stack backtrace
=up, down - change current stack frame

«list - display source code (list n, list <function
name>)

"print expression — evaluate and print expression
display expression

re-evaluate and print expression every time execution
pauses

undisplay - remove an expression from the recurring list
sinfo locals - print all locals (but not parameters)

=x (examine) - look at blocks of memory in
various formats

If we get a segmentation fault:
1. gdb./myprogram

2. Type "run"into GDB

3. When you get a segfault, type "backtrace”
or "bt"

4. Look at the line numbers from the

backtrace, starting from the top

Breakpoints

temporarily stop program running at
given points
look at values in variables
test conditions
break function (or line-number)
conditional breakpoints

to skip a bunch of iterations

to do assertion checking

[(gdb) break factorial

Breakpoint 1 at @x40064c: file factorial.c, line 18.

((gdb) run 10

Starting program: /homes/champk/TestingDemo/factorial.o 10

Breakpoint 1, factorial (x=10) at factorial.c:18
18 if (x == 0) {

(gdb) n

21 return x * factorial(x-1);

sbreak - sets breakpoint
break <function names> | <line numbers | <file>:<line number>

=info break - print table of currently set breakpoints
=clear - remove breakpoints
=disable/enable temporarily turn breakpoints off/on

=continue - resume execution to next breakpoint or
end of program

=step - execute next source line

"next — execute next source line, but treat function
calls as a single statement and don't “step in”

=finish — execute to the conclusion of the current
function
how to recover if you meant “next” instead of “step”

gdb demo

Output is an empty C string, zero

reverse.c characters followed by a null
terminator
Input h = 1 1 0 \n | \0
Output h e L ! o \n | \0
Input h Je |1 |1 Jo |\n |\o

Output R\@ |e\n [* 0o [¥ 1 |e 1 [Xr e |X6h

Testing

Computers don’'t make mistakes- people do!

“I'm almost done, I just need to make sure it works”
- Naive 14Xers

=Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

Isolate
Break your code into small modules
Build in increments

Make a plan from simplest to most complex cases

Test as you go

o vk w N RE

As your code grows, so should your tests

CSE 373 SP 18 - KASEY GHAMPION

Types of Tests

=Black Box
Behavior only - ADT requirements
From an outside point of view
Does your code uphold its contracts with its users?
Performance/efficiency

Includes an understanding of the implementation
Written by the author as they develop their code

Break apart requirements into smaller steps

“unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY GEIAMPION

What to test?

Expected behavior
The main use case scenario
Does your code do what it should given friendly conditions?

Forbidden Input

What are all the ways the user can mess up?

Empty/Null
Protect yourself!
How do things get started?

Boundary/Edge Cases
First

last

Scale
Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY GHAMPION

Tips for testing

*You cannot test every possible input, parameter value, etc.
Think of a limited set of tests likely to expose bugs.

=Think about boundary cases
Positive; zero; negative numbers
Right at the edge of an array or collection's size

=Think about empty cases and error cases
O, -1, null; an empty list or array

=test behavior in combination
Maybe add usually works, but fails after you call remove
Make multiple calls; maybe size fails the second time only

Appendix

CSE 374 AU 20 - KASEY CHAMPION 21

