- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #14
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 1 4 : m a ke fl ‘ e S Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

Assignments

HW?2 Live - Soft Deadline EXTENDED Friday October 30'" at 9pm PST
Autograder updated

Reminder: Midpoint Deadline Friday November 6" at 9pm PST

Review Assignment Live - Due Date EXTENDED Thursday October 29" at 9pm PST
24 hrs late 20% penalty

48 hrs late 50% penalty
Not accepted more than 48hrs late
Combination of autograding & handchecking
Reminder: Midpoint Deadline Friday November 6™ at 9pm PST
Will post grades to canvas sometime the week after

Make Files

=Make is a program which automates building dependency trees
List of rules written in a Makefile declares the commands which build each intermediate part
Helps you avoid manually typing gcc commands, easier and less prone to typos
Automates build process target: source

tab not spaces! recipe

= Makefiles are a list of with Make rules which include:

Target - An output file to be generated, dependent on one or more sources
Source - Input source code to be built 1l.0: 11l.c 11l.h
Recipe - command to generate target gcc —-c 1ll.c

=Makefile logic
Make builds based on structural organization of how code depends on other code as defined by includes
Recursive - if a source is also a target for other sources, must also evaluate its dependencies and remake as required

Make can check when you've last edited each file, and only build what is needed!
Files have "last modification date". make can check whether the sources are more recent than the target
Make isn’t language specific: recipe can be any valid shell command

*run make command from within same folder
Smake [-f makefile] [options] .. [targets] ../
Starts with first rule in file then follows dependency tree
~f specifies makefile name, if non provided will default to “Makefile”
if no target is specified will default to first listed in file

https://www.gnu.org/software/make/manual/make.html#Introduction

https://www.gnu.org/software/make/manual/make.html#Introduction

Makefile Example:

Linked List

try_list

#include "11.h"

int main() {
Node *nl = make node(4, NULL);

// rest of main.. main.c

(S

-

main.o Il.o

#ifndef LL H
#define LL H

typedef struct Node {

// rest of Node def.. 11.h

main.c Il.h Il.

try lists: 1ll.o main.o
gcc —o try lists l1ll.o0 main.o

1l1.0: 11.c 11.h

#include <stdlib.h>
#include <stdio.h>

#include "11.h"

Node *make node(int value, Node *next)

// rest of linked list code.. 11.c

gcc —¢ 1ll.c —-o 11.o0

main.o: main.c 11.h
gcc —-C main.c —0 main.o

Makefile

More Make Tools

*make variables help reduce repetitive typing
and make alterations easier
can change variables from command line
enables us to reuse Makefiles on new projects
can use conditionals to choose variable settings

=ifdef checks if a given variable is defined for
conditional execution

ifndef checks if a given variable is NOT defined

=Special characters:
$@ for target
$" for all sources
$< for left-most source
\ enables multiline recipies
* functions as wildcard (use carefully)

% enables implicit rule definition by using % as a make
specific wildcard

http://cslibrary.stanford.edu/107/UnixProgrammingTools.pd

CC = gcc
CGLAGS = -Wall

foo.o: foo.c foo.h bar.h
S(CC) S(CFLAGS) —-c foo.c -o foo.o

make CFLAGS=-g

EXE=

ifdef WINDIR #defined on Windows
EXE=.exe

endif

widget$ (EXE) : foo.o bar.o
S(CC) S(CFLAGS) -o widget$ (EXE) \
foo.o bar.o

OBJFILES = foo.0 bar.o baz.o
widget: $ (OBJFILES)
gcc —o widget $ (OBJFILES)

o®

.0: %.cC

S(CC) —-c S$(CFLAGS) S$< -o s@

clean:

rm *.o widget Makefile

http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf
http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

Phony Targets

=Atarget that doesn't create the listed output

*A way to force run commands regardless of
dependency tree

sCommon uses:

all - used to list all top notes across multiple
dependency trees

clean - cleans up files after usage
test - specifies test functionality
printing messages or info

all: try lists test suite
clean:

rm objectfiles
test: test suite

./test suite

CC = gcc
CGLAGS = -Wall
all: my program your program

my program: foo.o bar.o
$(CC) S (CFLAGS) -o my program foo.o bar.o

your program: bar.o baz.o

$ (CC) $(CFLAGS) —-o your program foo.o baz.o

#not shown: foo.o, bar.o, baz.o targets

clean:
rm *.0 my program your program

Makefile

Example Makefile

variable definitions

try_list

S
must include rules

) for each file
main.o Il.o
rules define
dependency
hierarchy
main.c Il.h Il.

CC = gcc

CGLAGS = -g —-Wall -std=cll

try lists: main.o 1l.o

$(CC) S (CFLAGS) -o try lists main.o 1ll.o

main.o: main.c 1l1l.h

S(CC) S (CFLAGS) -c main.c

11.0: 11.c 11.h

$(CC) $(CFILES) -c 1ll.c

clean:
rm *.0O

Makefile

Example

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "speak.h"
#include "shout.h"
/* Write message m in uppercase to
stdout */
void shout (char m[])
{
int len; /* message length */
char *mcopy; /* copy of original
message */

int 1i;
len = strlen(m);
mcopy = (char

*Ymalloc (len*sizeof (char)+1);
strcpy (mcopy,m) ;
for (i = 0; 1 < len; i++)
mcopy[i] = toupper (mcopyli])
speak (mcopy) ; free (mcopy);

shout.c

shout.o

shout.c shout.h

talk
main.o speak.o
main.c | speak.h speak.c

#include <stdio.h>

#include "speak.h"

/* Write message m to stdout */
void speak (char m[])

{

Qo

printf ("$s\n", m);
speak.c

#ifndef SPEAK H
#define SPEAK H
/* Write message m to stdout */
void speak(char m[]);

#endif /* ifndef SPEAK H */

speak.h

#include "speak.h"
#include "shout.h"
/* Say HELLO and goodbye */
int main(int argc, char* argvl[])
{
shout ("hello") ;
speak ("goodbye") ;
return 0;

} main.c

#ifndef SHOUT H
#define SHOUT H

void shout (char m[]);
#endif /* ifndef SHOUT H */

/* Write message m in uppercase to stdout */

shout.h

talk

Example

shout.o main.o speak.o
shout.c shout.h main.c| | speak.h speak.c
all: talk

The executable
talk: main.o speak.o shout.o
gcc -Wall -std=cll -g -o talk main.o speak.o shout.o

Individual source files
speak.o: speak.c speak.h
gcc -Wall -std=cll -g -c speak.c
shout.o: shout.c shout.h speak.h
gcc -Wall -std=cll -g -c shout.c
main.o: main.c speak.h shout.h
gcc -Wall -std=cll -g -c main.c

A "phony" target to remove built files and backups
clean: rm -f *.o talk *~

Makefile

Example

Makefile talk

CC = gcc

Compiler flags: -Wall for debugger warnings .

-std=cll for updated standards shout.o main.o Speaki)
CFLAGS = -Wall -std=cll

i fdef DEBUG shout.c shout.h main.c speak.h speak.c
CFLAGS += -g

endif

The name of the program that we are producing.
TARGET = talk
Individual source files
This is a "phony" target that tells speak.o: speak.c speak.h
make what other targets to build. $(CC) $(CFLAGS) -c speak.c

all: S5 (TARGET) shout.o: shout.c shout.h speak.h

$(CC) S$(CFLAGS) -c shout.c
All the .o files we need for our executable. main.o: main.c speak.h shout.h

OBJS = main.o speak.o shout.o $(CC) $(CFLAGS) -c main.c

The executable
S (TARGET) : $ (OBJS)
$(CC) $(CFLAGS) -o talk $(OBJS)

A "phony" target to remove built files and backups
clean: rm -f *.o talk *~

Memory Leak

A memory leak occurs when code fails to deallocate dynamically allocated memory that is
no longer used
forgetting to free a malloc—ed block
losing or changing the pointer to a malloc-ed block

*Result - program’s memory will keep growing - your OS handles this
ok for short-lived programs because memory is deallocated when program ends
bad repercussions for long-lived programs

slow down processing over time

could exhaust all available memory -> program crash

other programs could get starved for memory

Common Memory Errors

X:
free
y:
free

(
(%) ;
(
(%) ;

int*)malloc (M*sizeof (int)) ;

int*)malloc (M*sizeof (int)) ;

int x[] =
free (x);

X is a local variable stored in stack, cannot be freed

Double free and Forgetting to free memory “memory leak”

char** strings =
free(strings);

(char**)malloc (sizeof (char)

*3);

i<M; 1i++)

int*)malloc (M*sizeof (int)) ;

X
int*)malloc (M*sizeof (int)) ;
1
i

Mismatch of type - wrong allocation size

Accessing freed memory

Common Memory Errors

#define LEN 8

int arr[LEN];

for (int i = 0;
arr[i] = 0;

1 <= LEN; i++)

Out of bounds access

long val;
printf (“sd”, &val);

Dereferencing a non-pointer

int sum int (int* arr, 1nt len)
{
int sum;
for (int 1 = 0; 1 < len; i++)

sum += arr[i];
return sum;

Reading memory before allocation

int* foo()

{
int val = 0;
return &val;

dangling pointer

int foo ()

{

int* arr = (int*)malloc(sizeof (int) *N) ;

read n ints (N, arr);

int sum = 0O;

for (int 1 = 0; 1 < N; 1i++)
sum += arr[i];

return sum;

memory leak — failing to free memory

Finding and Fixing Memory Errors

=Valgrind is a tool that simulates your program to find memory errors
it can detect all of the errors we've discussed so far!
catches pointer errors during execution
prints summary of heap usage, including details of memory leaks

gcc -0 myprogram myprogram.c

valgrind --leak-check=full myprogram argl ag

=Can show: Memory leaks -- where pointers to malloc'd blocks are
Use of uninitialized memory lost forever
Reading/writing memory after it has been free'd Mismatched use of malloc/new/new [] vs
Reading/writing off the end of malloc'd blocks free/delete/delete []
Reading/writing inappropriate areas on the stack Overlapping src and dst pointers in memcpy() and

related functions

Valgrind Example

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
int i;
int *a = malloc(sizeof(int) * 10);
if (!a) return -1; /*malloc failed*/
for (i = 0; i < 11; i++){
a[i] = 41j;
}
free(a);
return 0;

examplel.c

$ gcc -Wall -pedantic -g examplel.c -o example
$ valgrind ./example

==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==
==23779==

Memcheck, a memory error detector

Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
Command: ./example

Invalid write of size 4
at 0x400548: main (examplel.c:9)

Address 0x4c30068 is 0 bytes after a block of size 40 alloc'd
at 0x4A05E46: malloc (vg_replace malloc.c:195)
by 0x40051C: main (examplel.c:6)

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 1 allocs, 1 frees, 40 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

terminal

Valgrind EX2

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv){
int i;
int. ario);
for (i = 0; i < 9; i++)
a[i] = i;

for (1 = 0; 1 < 10; i++){
printf("%d ", a[i]);

}

printf("\n"):

return 0;

example2.c

$ gcc -Wall -pedantic -g example2.c -o example2
$ valgrind ./example2

==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==

==24599==
==24599==
==24599==
==24599==
==24599==
==24599==
==24599==

Memcheck, a memory error detector

Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
Command: ./example2

Conditional jump or move depends on uninitialised value(s)
at 0x33A8648196: vfprintf (in /1lib64/libc-2.13.s0)
by 0x33A864FB59: printf (in /1ib64/libc-2.13.s0)
by 0x400567: main (example2.c:11)

Use of uninitialised value of size 8
at 0x33A864484B: _itoa word (in /1ib64/libc-2.13.s0)
by 0x33A8646D50: vfprintf (in /1lib64/libc-2.13.s0)
by 0x33A864FB59: printf (in /1ib64/libc-2.13.s0)
by 0x400567: main (example2.c:11)

Conditional jump or move depends on uninitialised value(s)
at 0x33A8644855: _itoa word (in /1libé64/libc-2.13.s0)
by 0x33A8646D50: vfprintf (in /1lib64/libc-2.13.s0)
by 0x33A864FB59: printf (in /1ib64/libc-2.13.s0)
by 0x400567: main (example2.c:11)

56 7 87

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 0 allocs, 0 frees, 0 bytes allocated

All heap blocks were freed -- no leaks are possible
For counts of detected and suppressed errors, rerun with: -v
Use --track-origins=yes to see where uninitialised values come from

ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 6 from 6)

terminal

Appendix

CSE 374 AU 20 - KASEY CHAMPION 17

File IO - working with strings

*FILE *fopen(const char *path, const char *mode);

opens the file whose name is the string pointed to by path and associates a stream with it.

=char *fgets(char *s, int size, FILE *stream);

reads in at most one less than size characters from stream and stores them into the buffer pointed to by s.
Reading stops after an EOF or a newline. If a newline is read, it is stored into the buffer. Aterminating null byte
(\O') is stored after the last character in the buffer.

sint fprintf(FILE *stream, const char *format, ...);
It's printf, but to a file.
int fputc(int c, FILE *stream); // print a single character
int fputs(const char *s, FILE *stream); // print a string

