- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

i - Minty 'g:?* : . 1,"
FEET e 3
Lecture Participation Poll #12
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

Lecture 12: Structs and | cse 3 nemediate

Programming Concepts and

Multi File Tools

http://pollev.com/cse374

Administrivia

Assignments
HW?2 Live - Soft Deadline Thursday October 29'" at 9pm PST
Don’t need to zip files
More hints added!
HW3 coming this week
Reminder: Midpoint Deadline Friday November 6™ at 9pm PST
Review Assignment Live — Due Wednesday
24 hrs late 20% penalty
48 hrs late 50% penalty
Not accepted more than 48hrs late

Data Types in C

=void - a place holder

snumbers - int, short, long, double, float (signed, unsigned)

=char - a very short int (1 byte) interpreted as a printable character
=pointers (T*) - stores address of where a value is stored in memory

=arrays (T[]) - implicit promotion to pointer when passed as an argument to a function or
returned from a function

*booleans - not defined in C so instead we use values, O or NULL is interpreted as false,
anything else true

sAdvanced: Union T, Enum E, Function Pointers, Structs

Typedef

A function that creates an alias for an existing type

typedef <type> <name>;

Example: In C, strings are "char*” but we can rename them to “string”

typedef char* string;
int main(int argc, string *argv)
{

string s = “hello, world”;

printf (“%s\n”, s);

Type-casting

=casting — converting one type to another

If E is @ numeric type and T is a numeric type:
* To wider type, get same value

* To narrower type, may not get same value

(T) E
* same as Java

main () (employs mod operator)
* From floating point to int, will round (may
{ overflow)
int sum = 17, count = 15; * From int to floating point, may round (int to

double is exact on most machines)
double mean;

mean = (double) sum / count;

printf (Value of mean: %$f\n”, mean);

Pointer-casting

«If be has type T1*, then (T2*)E is a (pointer)cast

=Does not alter the address stored, but used to manage types

vold evil (int **p, int x)
{
int *q = (int*)p;
q o= x;
}
volid f (int **p)
{
evil (p, 3495);
**p = 17; // writes 17 to address 345 -
best case crash

}

Structs

=sstructs are a method of constructing new
datatypes
store a collection of values together in memory, fields
similar to a Java class, but no methods
individual values are referred to using the " operator

can use typedef to rename and turn struct tag into a
“type"

typedef struct Cat Cat;

or

typedef struct Cat {

} Cat;
Then you don't need keyword “struct”

Cat mercy; instead of struct Cat mercy;

struct Cat

{
char *name;
int age;
char *breed;

}

int main ()

{

struct Cat mercy;

mercy.name = “Iron Fist No
mercy.age = 6;
mercy.breed = “Pixie Bob”;

Mercy”;

Parameters / Arguments

=Function parameters are initialized with a copy of corresponding argument
If the argument is a pointer, the parameter value will point to the same thing (pointer is copied)
arrays are passed as pointers
Structs are passed as a copy by default, so it is more common to intentionally pass as pointers

avoids copying large objects
allows manipulation of original struct <- allows creation of methods that manipulate new type, like Java
to access members you must dereference the pointer (*) and access the field (.) - use parenthesis to ensure dereference happens first

(*ptr) . hasashortcut: ptr->

(Cat*)malloc (sizeof (Cat)) ;

Cat (*ptr)
(*ptr) .age = 6;

(*ptr) .aget++;
ptr->age;

Example: Pointer.c

// constructor for a new Point
Point newPoint ()

{

Point p; p.x = 0; p.y = 0; return p;

}

// translateX moves one point horizontally by deltax

void translateX(Point* p, int deltaX)

{

p->x += deltaX; // OR (*p).x += deltaX;

}

// translateX wrong won't move the original point
voild translateX wrong(Point p, int deltaX)

{
p.x t+= deltaX;
}
// print out the point.
void print (Point* p)
{
printf ("p = (%d, %d)\n", p->x,
}

P—>y)

// note: here we could pass by value

void print point (Point p)
{
printf ("p = (%d, %d)\n", p.x,

p.y);

//

main tests the Point struct

int main(int argc, char **argv)

{

Point p = newPoint ()

printf ("Show point.\n");

print (&p); // pass by reference

translateX (&p, 12);

print (&p);

printf ("Show incorrectly translated point.\n");
translateX wrong(p, 12);

print (&p) ;

printf ("But pass by value works for print.\n");
print point (p);

constructor for a new Point Point newPoint ()

Point p;
p.x = 0;
p.y = 0;

return p;

Linked Lists

List-> [7| Data Next-> [7| Data | Next-> " Data || NULL
#include <stdlib.h> int main () {
#include <stdio.h> Node *nl = make node (4, NULL);
Node *nZ2 = make node (7, nl);
typedef struct Node { Node *n3 = make node (3, n2);
int value;
struct Node *next; printf (
} Node; "$d%dsd\n",
n3->value,
Node *make node (int value, Node *next) { n3->next->value,
Node *node = (Node*) malloc (sizeof (Node)) n3->next->next->value
node->value = value;) 7
node->next = next;
return node; free (n3);
} free (n2);
free (nl);
}

Multi-File C Programming

=You can split C into multiple files!
What if we wanted to use Linked List code in a different project?
If the linked list code is long, it can make files unwieldy
What if we want to separate our “main” from the struct definitions

=Pass all “.c” files into gcc:
gcc -o try lists 1l.c mailn.c

Must include code header files to enable one file to see the other, otherwise you have linking
errors

$ gcc -g -Wall -o try lists 1ll.c main.c
main.c: In function ‘main’:
main.c:5:5: error: unknown type name ‘Node’
5 | Node *nl = make node(4, NULL);
|
main.c:5:16: warning: implicit declaration of function ‘make_node’ [-Wimplicit-function-declaration]
5 | Node *nl = make node(4, NULL);

| s s e s s s

Sharing code across files

*Must always declare a function or struct in every
file it's used in

Thank goodness C lets us separate declarations and
definitions ;)

Include function header as definition

#include <stdlib.h>
#include <stdio.h>

typedef struct Node {
int value;
struct Node *next;
} Node;

Node *make node (int value, Node
*next) ;

Node *make node (int value, Node *next); int main () {
Include struct type definition , , Node *nl = make node (4, NULL);
#include <stdlib.h> Node *n2 = make node (7, nl);
typedef struct Node Node *n3 = make node (3, n2);
{ typedef struct Node {
. int value; // rest of main.. main.c
int wvalue; struct Node *next; !
Node;
struct Node *next; }
} Node; Node *make node (int value, Node *next);

return node;

Node *make node (int value, Node *next) ({

Node *node = (Node*) malloc (sizeof (Node)) ;
node->value = value;
node->next = next;

1ll.c

Header Files

=Copying your function declarations to every file you
want to use them is not fun

If you forget to make a change to all of them, confusing
errors occur!

A header file (.h) is a file which contains just
declarations

=#include inserts the contents of a header file into
your .c file
Put declarations in a header, then include it in all other
files
Two types of #include
#include <stdio.h>

Used to include external libraries. Does not look for other files that you
created.

#include "myfile.h"

Used to include your own headers. Searches in the same folder as the
rest of your code.

typedef struct
int value;

Node {

struct Node *next;

} Node;

Node *make node (int value, Node *next); 11.h

#include <stdlib.h>
#include <stdio.h>

#include "11.h"

Node *make node (int value, Node *next) {

Node *node

= (Node*) malloc (sizeof (Node)) ;

node—->value = value;

node->next

= next;

return node;

} ll.c
#include "11.h"
int main () {
Node *nl = make node (4, NULL);
Node *n2 = make node (7, nl);
Node *n3 = make node (3, n2);
// rest of main..
} main.c

Header Guards

=Consider the following header structure:
Header A includes header B.
Header C includes header B.
A source code file includes headers A and C.

The code now includes two copies of header B!
Solution: "header guard”

#ifndef LL H
#define LL H

typedef struct Node {
int value;
struct Node *next;
} Node;

Node *make node (int value, Node *next);

#include "11.h"

int main () {
Node *nl = make node (4, NULL);
Node *n2 = make node (7, nl);
Node *n3 = make node (3, n2);
// rest of main..

¥ main.c

#fendif 11.h
#include <stdlib.h>
#include <stdio.h>
#include "11.h"
Node *make node (int value, Node *next) {
Node *node =
(Node*)malloc (sizeof (Node)) ;
node->value = value;
node->next = next;
return node;
} 1l1l.c

Libraries in C

=Remember #include <stdio.h>?

=That tells our .c file what function declarations are in stdio.h, but what about the function definitions?
(i.e. the code)

"\We don't have access to stdio.c

=Instead, we have a pre-compiled library that we can call functions within
The stdio library is included by default with gcc

=In C, these "libraries” are called object files

Object Files

*All C code is broken down into functions

“When compiled, a function is turned into "machine code"” which the physical CPU
electronics can understand

=Object files contain the machine code for the functions within

*These define the complete behavior of a function and can be called from your own C code

Linking in C

=Every time you have compiled something with gcc, you have actually been doing two things:
Compiling
Linking

=Compiling: Translating C code (a single .c file) into machine code stored in object files
=Linking: Combining many object files into one executable

=Building multiple programs which use some of the same source code
Compile each object once and re-use it for multiple executables

=Many files
Slow-to-compile files which you don't change often don't have to be re-compiled

incremental compilation: Huge projects can take hours or days to compile from scratch! We can save time by
only re-compiling what has changed.

(executable)

Dependency Craph: linked list project
Executable

Example

Consider this dependency gr:
What files (source and objeci
required when building
program two?

A. Db, e

B. beg

C. a,b,cef
D. b,ef gh

E. b,defgh

program one

file g.h

file h.h

Automating Dependency Graphs with Make

*make is a program which automates building trees of dependencies
List of rules written in a Makefile declares the commands which build each intermediate part
Helps you avoid manually typing gcc commands

= single rule specifies:
An output file to be generated (also called a target)
List of input files (also called sources)
List of commands which will turn the input files into the output file

="To build this target, make sure you have these files available, and then run these commands”

=Make can check when you've last edited each file, and only build what is needed!
Files have "last modification date”. make can check whether the sources are more recent than the target.

=Rule syntax:
11.0: 1l.c 11.h

gcc —-c 1ll.c

Appendix

CSE 374 AU 20 - KASEY CHAMPION 21

