
Lecture 12: Structs and
Multi File C

CSE 374: Intermediate
Programming Concepts and
Tools

1

http://pollev.com/cse374

Administrivia
Assignments

HW2 Live - Soft Deadline Thursday October 29th at 9pm PST

-Don’t need to zip files

-More hints added!

HW3 coming this week

Reminder: Midpoint Deadline Friday November 6th at 9pm PST

Review Assignment Live – Due Wednesday

-24 hrs late 20% penalty

-48 hrs late 50% penalty

-Not accepted more than 48hrs late

2CSE 374 AU 20 - KASEY CHAMPION

Data Types in C

▪void - a place holder

▪numbers – int, short, long, double, float (signed, unsigned)

▪char – a very short int (1 byte) interpreted as a printable character

▪pointers (T*) – stores address of where a value is stored in memory

▪arrays (T[]) – implicit promotion to pointer when passed as an argument to a function or
returned from a function

▪booleans – not defined in C so instead we use values, 0 or NULL is interpreted as false,
anything else true

▪Advanced: Union T, Enum E, Function Pointers, Structs

3CSE 374 AU 20 - KASEY CHAMPION

Typedef

▪A function that creates an alias for an existing type

typedef <type> <name>;

Example: In C, strings are ”char*” but we can rename them to “string”

typedef char* string;

int main(int argc, string *argv)

{

 string s = “hello, world”;

 printf(“%s\n”, s);

}
4CSE 374 AU 20 - KASEY CHAMPION

Type-casting

▪casting – converting one type to another

(T)E
* same as Java

main ()

{

 int sum = 17, count = 15;

 double mean;

 mean = (double) sum / count;

 printf(Value of mean: %f\n”, mean);

}

5CSE 374 AU 20 - KASEY CHAMPION

If E is a numeric type and T is a numeric type:
• To wider type, get same value
• To narrower type, may not get same value

(employs mod operator)
• From floating point to int, will round (may

overflow)
• From int to floating point, may round (int to

double is exact on most machines)

Pointer-casting

▪If be has type T1*, then (T2*)E is a (pointer)cast

▪Does not alter the address stored, but used to manage types

6CSE 374 AU 20 - KASEY CHAMPION

void evil (int **p, int x)
{
 int *q = (int*)p;
 *q = x;
}
void f(int **p)
{
 evil(p, 345);
 **p = 17; // writes 17 to address 345 –
best case crash
}

Structs

▪structs are a method of constructing new
datatypes
-store a collection of values together in memory, fields

-similar to a Java class, but no methods

-individual values are referred to using the “.” operator

-can use typedef to rename and turn struct tag into a
“type”
typedef struct Cat Cat;

or

typedef struct Cat {

 …

} Cat;

Then you don’t need keyword “struct”

Cat mercy; instead of struct Cat mercy;

7CSE 374 AU 20 - KASEY CHAMPION

struct Cat
{
 char *name;
 int age;
 char *breed;
}
int main()
{
 struct Cat mercy;
 mercy.name = “Iron Fist No Mercy”;
 mercy.age = 6;
 mercy.breed = “Pixie Bob”;
}

Parameters / Arguments

▪Function parameters are initialized with a copy of corresponding argument
-If the argument is a pointer, the parameter value will point to the same thing (pointer is copied)

-arrays are passed as pointers

-Structs are passed as a copy by default, so it is more common to intentionally pass as pointers
- avoids copying large objects

- allows manipulation of original struct <- allows creation of methods that manipulate new type, like Java

- to access members you must dereference the pointer (*) and access the field (.) – use parenthesis to ensure dereference happens first

- (*ptr). has a shortcut: ptr->

Cat (*ptr) = (Cat*)malloc(sizeof(Cat));

(*ptr).age = 6;

…

(*ptr).age++;

ptr->age;

8CSE 374 AU 20 - KASEY CHAMPION

Example: Pointer.c

9CSE 374 AU 20 - KASEY CHAMPION

// constructor for a new Point
Point newPoint()
{
 Point p; p.x = 0; p.y = 0; return p;
}
// translateX moves one point horizontally by deltax
void translateX(Point* p, int deltaX)
{
 p->x += deltaX; // OR (*p).x += deltaX;
}
// translateX_wrong won't move the original point
void translateX_wrong(Point p, int deltaX)
{
 p.x += deltaX;
}
// print out the point.
void print(Point* p)
{
 printf("p = (%d, %d)\n", p->x, p->y);
}
// note: here we could pass by value
void print_point(Point p)
{
 printf("p = (%d, %d)\n", p.x, p.y);
}

// main tests the Point struct
int main(int argc, char **argv)
{
 Point p = newPoint();
 printf ("Show point.\n");
 print(&p); // pass by reference
 translateX(&p, 12);
 print(&p);
 printf ("Show incorrectly translated point.\n");
 translateX_wrong(p, 12);
 print(&p);
 printf ("But pass by value works for print.\n");
 print_point (p);
}
// constructor for a new Point Point newPoint()
{
 Point p;
 p.x = 0;
 p.y = 0;
 return p;
}

Linked Lists

10CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>
#include <stdio.h>

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
}

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 printf(
 "%d%d%d\n",
 n3->value,
 n3->next->value,
 n3->next->next->value
);

 free(n3);
 free(n2);
 free(n1);
}

Multi-File C Programming

▪You can split C into multiple files!
-What if we wanted to use Linked List code in a different project?

-If the linked list code is long, it can make files unwieldy

-What if we want to separate our “main” from the struct definitions

▪Pass all “.c” files into gcc:

gcc -o try_lists ll.c main.c

Must include code header files to enable one file to see the other, otherwise you have linking
errors

11CSE 374 AU 20 - KASEY CHAMPION

Sharing code across files

▪Must always declare a function or struct in every
file it’s used in
-Thank goodness C lets us separate declarations and

definitions ;)

-Include function header as definition

Node *make_node (int value, Node *next);
-Include struct type definition

typedef struct Node
{
 int value;
 struct Node *next;
} Node;

12CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next);

Node *make_node(int value, Node *next) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
}

#include <stdlib.h>
#include <stdio.h>

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node
*next);

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 // rest of main…
}

ll.c

main.c

Header Files

▪Copying your function declarations to every file you
want to use them is not fun
-If you forget to make a change to all of them, confusing

errors occur!

▪A header file (.h) is a file which contains just
declarations

▪#include inserts the contents of a header file into
your .c file
-Put declarations in a header, then include it in all other

files
- Two types of #include

#include <stdio.h>
- Used to include external libraries. Does not look for other files that you

created.

#include "myfile.h"
- Used to include your own headers. Searches in the same folder as the

rest of your code.

13CSE 374 AU 20 - KASEY CHAMPION

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next); ll.h

#include <stdlib.h>
#include <stdio.h>

#include "ll.h"

Node *make_node(int value, Node *next) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
} ll.c

#include "ll.h"

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 // rest of main…
} main.c

Header Guards

▪Consider the following header structure:
-Header A includes header B.

-Header C includes header B.

-A source code file includes headers A and C.
- The code now includes two copies of header B!

- Solution: "header guard"

14CSE 374 AU 20 - KASEY CHAMPION

#ifndef LL_H
#define LL_H

typedef struct Node {
 int value;
 struct Node *next;
} Node;

Node *make_node(int value, Node *next);
#endif ll.h

#include <stdlib.h>
#include <stdio.h>

#include "ll.h"

Node *make_node(int value, Node *next) {
 Node *node =
(Node*)malloc(sizeof(Node));
 node->value = value;
 node->next = next;
 return node;
} ll.c

#include "ll.h"

int main() {
 Node *n1 = make_node(4, NULL);
 Node *n2 = make_node(7, n1);
 Node *n3 = make_node(3, n2);

 // rest of main…
} main.c

Libraries in C

▪Remember #include <stdio.h>?

▪That tells our .c file what function declarations are in stdio.h, but what about the function definitions?
(i.e. the code)

▪We don't have access to stdio.c

▪Instead, we have a pre-compiled library that we can call functions within
-The stdio library is included by default with gcc

▪In C, these "libraries" are called object files

15CSE 374 AU 20 - KASEY CHAMPION

Object Files

▪All C code is broken down into functions

▪When compiled, a function is turned into "machine code" which the physical CPU
electronics can understand

▪Object files contain the machine code for the functions within

▪These define the complete behavior of a function and can be called from your own C code

16CSE 374 AU 20 - KASEY CHAMPION

Linking in C

▪Every time you have compiled something with gcc, you have actually been doing two things:
-Compiling

-Linking

▪Compiling: Translating C code (a single .c file) into machine code stored in object files

▪Linking: Combining many object files into one executable

▪Building multiple programs which use some of the same source code
-Compile each object once and re-use it for multiple executables

▪Many files
-Slow-to-compile files which you don't change often don't have to be re-compiled

-incremental compilation: Huge projects can take hours or days to compile from scratch! We can save time by
only re-compiling what has changed.

17CSE 374 AU 20 - KASEY CHAMPION

Dependency Graph: linked list project

18CSE 374 AU 20 - KASEY CHAMPION

Example

Consider this dependency graph.
What files (source and object) are
required when building
program_two?

b, e

b, e, g

a, b ,c, e, f

b, e, f, g, h

b, d, e, f, g, h

19CSE 374 AU 20 - KASEY CHAMPION

Automating Dependency Graphs with Make

▪make is a program which automates building trees of dependencies
-List of rules written in a Makefile declares the commands which build each intermediate part

-Helps you avoid manually typing gcc commands

▪ single rule specifies:
-An output file to be generated (also called a target)

-List of input files (also called sources)

-List of commands which will turn the input files into the output file

▪"To build this target, make sure you have these files available, and then run these commands"

▪Make can check when you've last edited each file, and only build what is needed!
-Files have "last modification date". make can check whether the sources are more recent than the target.

▪Rule syntax:

ll.o: ll.c ll.h

 gcc -c ll.c
20CSE 374 AU 20 - KASEY CHAMPION

Appendix

21CSE 374 AU 20 - KASEY CHAMPION

