
Lecture 11: Dynamic
Memory Allocation

Continued…

CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #11

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia
Assignments

HW2 Live - Soft Deadline Thursday October 29th at 9pm PST

-Don’t need to zip files

-More hints added!

HW1 Hidden Case 2 – make “*” work as input

-Check discord if you are spending too much time!

-If it works locally but not in gradescope ping @staff

Reminder: Midpoint Deadline Friday November 6th at 9pm PST

Review Assignment Live – Due Wednesday

-24 hrs late 20% penalty

-48 hrs late 50% penalty

-Not accepted more than 48hrs late

2CSE 374 AU 20 - KASEY CHAMPION

Memory Allocation
▪Allocation refers to any way of asking for the operating
system to set aside space in memory

▪How much space? Based on variable type & your system
- to get specific sizes for your system use “sizeof(<datatype>)”

function in stdlib.h

▪Global Variables – static memory allocation
- space for global variables is set aside at compile time, stored in

RAM next to program data, not stack
- space set aside for global variables is determined by C based on

data type
- space is preserved for entire lifetime of program, never freed

▪Local variables – automatic memory allocation
- space for local variables is set aside at start of function, stored in

stack
- space set aside for local variables is determined by C based on data

type
- space is deallocated on return

3CSE 374 AU 20 - KASEY CHAMPIONhttps://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

* pointers require space needed for an address – dependent on your
system - 4 bytes for 32-bit, 8 bytes for 64-bit

Type Storage Size Value Range

char 1 byte -128 to 127 or 0 to 255

unsigned
char

1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,786 to 32,767 or -2,147,483,648
to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned
short

2 bytes 0 to 65,535

long 8 bytes -9223372036854775808 to
9223372036854775807

unsigned
long

8 bytes 0 to 18446744073709551615

float 4 bytes 1.2E-38 to 3.4E+38

double 8 bytes 2.3E-308 to 1.7E+308

long double 10 bytes 3.4E-4932 to 1.1E+4932

https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-and-C.html

Does this always work?

▪Static and automatic memory allocation – memory set aside is known at runtime
-Fast and easy to use

-partitions the maximum size per data type – not efficient

-life of data is automatically determined – not efficient

▪What if we don’t know how much memory we need until program starts running?

4CSE 374 AU 20 - KASEY CHAMPION

char* ReadFile(char* filename)
{
 int size = GetFileSize(filename);
 char* buffer = AllocateMem(size);

 ReadFileIntoBuffer(filename, buffer);
 return buffer;
}

You don’t know how big the filesize is

Dynamic Allocation

▪Situations where static and automatic allocation aren’t sufficient
-Need memory that persists across multiple function calls

- Lifetime is known only at runtime (long-lived data structures)

-Memory size is not known in advance to the caller
- Size is known only at runtime (ie based on user input)

▪Dynamically allocated memory persists until:
-A garbage collector releases it (automatic memory management)

- Implicit memory allocator, programmer only allocates space, doesn’t free it

- “new” in Java, memory is cleaned up after program finishes

- Your code explicitly deallocates it (manual memory management)

- C requires you manually manage memory

- Explicit memory allocation requires the programmer to both allocate space and free it up when finished

- ”malloc” and “free” in C

▪Memory is allocated from the heap, not the stack
-Dynamic memory allocators acquire memory at runtime

5CSE 374 AU 20 - KASEY CHAMPION

Storing Program Data in the RAM

▪When you trigger a new program the operating system
starts to allocate space in the RAM
-Operating System will default to keeping all memory for a program

as close together within the ram addresses as possible

-Operating system manages where exactly in the RAM your data is
stored
- Space is first set aside for program code (lowest available addresses)

- Then space is set side for initialized data (global variables, constants, string literals)

- As program runs…

- When the programmer manually allocates memory for data it is stored in the next
available addresses on top of the initialized data, building upwards as space is
needed

- When the program requires local variables they are stored in the empty space at
top of RAM, leaving space between stack and heap

- When the space between the stack and heap is full - crash (out of memory)

6CSE 374 AU 20 - KASEY CHAMPION

The heap is a large pool of available memory set aside
specifically for dynamically allocated data

Allocating Memory in C with malloc()
-void* malloc(size_t size)

- allocates a continuous block of “size” bytes of uninitialized memory

- Returns null if allocation fails or if size == 0

- Allocation fails if out of memory, very rare but always check allocation was successful before using pointer

- void* means a pointer to any type (int, char, float)

- malloc returns a pointer to the beginning of the allocated block

-var = (type*) malloc(sizeInBytes)
- Cast void* pointer to known type

- Use sizeof(type) to make code portable to different machines

-free deallocates data allocated by malloc
-Must add #include <stdlib.h>
-Variables in C are uninitialized by default

- No default “0” values like Java

- Invalid read – reading from memory before you have written to it

7CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 floats
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
{
 return ERROR;
}
printf(“%f\n”, *arr) // Invalid read!
<add something to array>
<print f again, now it’s ok>

calloc()

var = (type*) calloc(numOfElements, bytesPerElement);

▪Like malloc, but also initializes the memory by filling it with 0 values

▪Slightly slower, but useful for non-performance critical code

▪Also in stdlib.h

8CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 doubles
double* arr = (double*) calloc(10, sizeof(double));
if (arr == NULL)
{
 return ERROR;
}
printf(“%f\n”, arr[0]) // Prints 0.00000

realloc()

▪void* realloc(void* p, size_t size)
-creates a new allocation with given size, copies the contents of p into it and then frees p

-saves a few lines of code

-can sometimes be faster due to allocator optimizations

-part of stdlib.h

9CSE 374 AU 20 - KASEY CHAMPION

Freeing Memory in C with free()
▪Void free(void* ptr)

- Released whole block of memory stored at location ptr to pool
of available memory

- ptr must be the address originally returned by malloc (the
beginning of the block) otherwise system exception raised

- ptr is unaffected by free
- Set pointer to NULL after freeing it to deallocate that space too

- Calling free on an already released block (double free) is
undefined behavior – best case program crashes

- Rule of thumb: for every runtime call to malloc there should be
one runtime call to free

- if you lose all pointers to an object you can no longer free it –
memory leak!
- be careful when reassigning pointers
- this is usually the cause of running out of memory- unreachable data that cannot

be freed

- if you attempt to use an object that has been freed you hit a
dangling pointer

- all memory is freed once a process exits, and it is ok to rely on
this in many cases

10CSE 374 AU 20 - KASEY CHAMPION

//allocate an array to store 10 floats
float* arr = (float*)
malloc(10*sizeof(float));
if (arr == NULL)
{
 return ERROR;
}
for (int i = 0; i < size*num; i++)
{
 arr[i] = 0;
}
free(arr);
arr = NULL; // Optional

Example

11CSE 374 AU 20 - KASEY CHAMPION

void foo(int n, int m)
{
 int i, *p; // declare local variables
 p = (int*) malloc(n*sizeof(int)); //allocate block of n ints
 if (p == NULL) // check for allocation error
 {
 perror(“malloc”); //prints error message to stderr
 exit(0);
 }
 for (i=0; i<n; i++) // initialize int array
 p[i] = i;
 p = (int*) realloc(p, (n+m)*sizeof(int)); // add space for m at end of p
block
 if (p == NULL) // check for allocation error
 {
 perror(“realloc”);
 exit(0);
 }
 for (i=n; i<n+m; i++) // initialize new space at back of array
 p[i] = i;
 for (i=0; i<n+m; i++) // print out array
 printf(“%d\n”, p[i]);
 free(p); // free p, pointer will be freed at end of function
}

Demo: malloc() and
realloc()

12CSE 374 AU 20 - KASEY CHAMPION

Example: 1 – initialized data

13CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

Example: 2 – main local variable in stack

14CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

1 2 3 4

Example: 3 – copy local variables in stack

15CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

1 2 3 4

Example: 4 – malloc space for int array

16CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

1 2 3 4

Example: 5 – fill available space from local var

17CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

1 2 3 4

0

Example: 6 – finish copy and free stack space

18CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

1 2 3 4

Example: 7 – free ncopy from heap

19CSE 374 AU 20 - KASEY CHAMPION

#include <stdlib.h>

int* copy(int a[], int size)
{
 int i, *a2;
 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}

int main(int argc, char** argv)
{
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // do stuff with your copy!
 free(ncopy);
 return EXIT_SUCCESS;
}

1 2 3 4

Memory Leak

▪A memory leak occurs when code fails to deallocate dynamically-allocated memory that is
no longer used
-Caused by forgetting to call free() on a malloc’d block of memory or losing a pointer to a malloc-d block

-Program’s memory will keep growing

▪What’s the problem?
-Short-lived program might not be an issue, all memory is deallocated when program ends

-Long-lived programs might slow down over time, exhaust all available memory and crash or starve other
programs of memory

20CSE 374 AU 20 - KASEY CHAMPION

Common Memory Errors

21CSE 374 AU 20 - KASEY CHAMPION

int x[] = {1, 2, 3};
free(x);

char** strings = (char**)malloc(sizeof(char)*5);
free(strings);

x is a local variable stored in stack, cannot be freed

x = (int*)malloc(M*sizeof(int));
free(x);
y = (int*)malloc(M*sizeof(int));
free(x);

Double free and Forgetting to free memory “memory leak”

x = (int*)malloc(M*sizeof(int));
free(x);
y = (int*)malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i];

Accessing freed memory

Mismatch of type - wrong allocation size

Common Memory Errors

22CSE 374 AU 20 - KASEY CHAMPION

#define LEN 8
int arr[LEN];
for (int i = 0; i <= LEN; i++)
 arr[i] = 0;

int* foo()
{
 int val = 0;
 return &val;
}

Out of bounds access
dangling pointer

Dereferencing a non-pointer

int sum_int(int* arr, int len)
{
 int sum;
 for (int i = 0; i < len; i++)
 sum += arr[i];
 return sum;
}

Reading memory before allocation

long val;
printf(“%d”, &val);

int foo()
{
 int* arr = (int*)malloc(sizeof(int)*N);
 read_n_ints(N, arr);
 int sum = 0;
 for (int i = 0; i < N; i++)
 sum += arr[i];
 return sum;
}

memory leak – failing to free memory

Finding and Fixing Memory Errors

▪Valgrind is a tool that simulates your program to find memory errors
-it can detect all of the errors we’ve discussed so far!

-catches pointer errors during execution

-prints summary of heap usage, including details of memory leaks

valgrind [options] ./myprogram arg1 arg2

Useful option: --leak-check=full

23CSE 374 AU 20 - KASEY CHAMPION

Appendix

24CSE 374 AU 20 - KASEY CHAMPION

25CSE 374 AU 20 - KASEY CHAMPION

26CSE 374 AU 20 - KASEY CHAMPION

errno

▪How do you know if an error has occurred in C?
-no exceptions like Java

▪usually return a special error value (NULL, -1)

▪stdlib functions set a global variable called errno
-check errno for specific error types

-if (errno == ENOMEM) // allocation failure

-perror(“error message”) prints to stderr

27CSE 374 AU 20 - KASEY CHAMPION

C Garbage Collector

▪garbage collection is the automatic reclamation of heap-allocated memory that is never
explicitly freed by application
-used in many modern languages: Java, C#, Ruby, Python, Javascript etc…

-“conservative” garbage collectors do exist for C and C++ but cannot collect all garbage

▪Data is considered “garbage” if it is no longer reachable
-lost pointers to data (Like a dropped link list node in Java)

-memory allocator can sometimes get help from the compiler to know what data is a pointer and what is not

28CSE 374 AU 20 - KASEY CHAMPION

