
Lecture 9: C Pointers
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #9

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia
Assignments

2CSE 374 AU 20 - KASEY CHAMPION

Where do computers store data?

▪CPU – Central Processing Unit – computer circuitry that
followed computer instructions in assembly

▪RAM – Random Access Memory – a computer’s short-term
memory where data is stored during program operation
-When a program ends the memory in use “goes away”

▪Hard disc storage – a computer’s long-term memory, this is
where data is stored when you need to preserve it across
re-starts.
-Data is stored indefinitely

-Can be modified by different processes

3CSE 374 AU 20 - KASEY CHAMPION

How do computers store data?

▪Large sequences of numbers
-Numbers are representations for electrical switches “transistors” that make up the

brains of the CPU

▪All data is binary – 1s and 0s
-A single digit is called a “bit”

-Bits come in groups of 8 called “bytes”

-All instructions can be translated into sequences of binary

▪Numbers represent other types of data
-ASCII – each byte represents a letter of the English alphabet

-Unicode – similar encoding structure to ASCII but covers a wider range of characters
including non-English characters, emojis etc…

-Images – represented by a 2D array of “pixels”
- Each pixel is represented by 3 numbers: Red, Blue and Green values 0-255

4CSE 374 AU 20 - KASEY CHAMPION

english h e l l o

ascii 104 101 108 108 111

binary 01101000 01100101 01101100 01101100 01101111

Binary Explained

https://www.youtube.com/watch?v=Xpk67YzOn5w

Addresses in Memory

▪Computer memory operates just like an array – addresses and the spaces they represent
-Spaces are measured in ”bytes” of 8 bits

5CSE 374 AU 20 - KASEY CHAMPION

▪Each space in memory is referred to by its
address
-Value 504 stored at address 0x08
-Address of value 504 stored at 0x38

▪A pointer is a data object that holds an
address
-Addresses can point to any type of data because they

simply point to any space in memory
-Like a “contact” object that stores someone’s phone

number, doesn’t store the actual person
-Pointers are also stored in memory
-Pointers can point to other pointers! <follow down the

rabbit hole>
-Pointers can either point to a single variable or an

array

Program Memory allocation

▪As a program executes it interacts with the computer’s working memory
-Code - Sets aside space for the code compiled instructions

-Globals - Then sets aside space for global variables, static constants, string literals, things that get declared at
program initialization

- Heap – As program executes this space of memory is used for local variables that get allocated and
deallocated (new or ‘malloc’ variables)

-Stack – holds and serves the current instructions in order that they are received (First In First Out)

-Both the heap and stack grow dynamically throughout the run of a program
- If they meet in the middle that means the program has run out of memory

6CSE 374 AU 20 - KASEY CHAMPION

Pointer and Address Syntax in C

int* ptr; // a variable of type “pointer to int” without assignment

int x = 123; //an int variable called “x” that stores “123”

ptr = &x; // store the address of “x” in “ptr”

* Means “pointer to type”
-* placed after type indicates a pointer data type

- Similar in java if you add [] after type you declare an array of that type

- int* means “pointer to int”

& means “address variable”
-Placing an & before a variable name will give you the address in memory of that variable

7CSE 374 AU 20 - KASEY CHAMPIONhttps://www.youtube.com/watch?v=5VnDaHBi8dM < Binky!

int *ptr; also works! Programmer preference

*ptr x &x

123

https://www.youtube.com/watch?v=5VnDaHBi8dM

Dereferencing Pointers
int x = 123;

int* ptr = &x;

*ptr = 456;

printf(“new value of y:%d\n”, *ptr);

▪Placing a * before a pointer dereferences the pointer
- Means “follow this pointer” to the actual data
- *ptr = <data> will update the data stored at the address the pointer is referring to ie ‘write to memory’
- *ptr will read the data stored at the address indicated by the pointer
- Accessing unused addresses causes a ‘segmentation fault’

▪A dangling pointer is one that points to a dead local variable
- Data that is no longer in use
- Dereferencing a dangling pointer is “undefined behavior” (UB)
- UB means ANYTHING could happen

- Program could crash(best case), silently fail(worst case)
- GCC can catch this kind of error with a warning, but not always

8CSE 374 AU 20 - KASEY CHAMPION

Strings in C
char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

9CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

10CSE 374 AU 20 - KASEY CHAMPIONhttps://en.wikipedia.org/wiki/Printf_format_string

https://en.wikipedia.org/wiki/Printf_format_string

Demo: C pointers
11CSE 374 AU 20 - KASEY CHAMPION

Questions

12CSE 374 AU 20 - KASEY CHAMPION

Binary
-Base 2 numbering system

-Convention: starts with 0b

0b110 in decimal

0b110 = (1 * 2^2) + (1 * 2^1) + (0 * 2^0) = 4 + 2 + 6

13CSE 374 AU 20 - KASEY CHAMPION

https://www.youtube.com/watch?v=LpuPe81bc2w < binary explained

https://www.youtube.com/watch?v=LpuPe81bc2w

Example: Returning a String

char* foo();

int main() {

 char* s = foo();

 printf(“string: %s\n”, s);

}

char* foo() {

 char message[256] = “Hello!”;

 return message;

}

14CSE 374 AU 20 - KASEY CHAMPIONhttps://godbolt.org/z/sxddq7

https://godbolt.org/z/sxddq7

