- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g ;
i g B0

4 P > 'g:?* : . 1,"
fﬁ?‘ﬁ?g.* :\:
Lecture Participation Poll #9
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

LeCtu re 9: C POinterS Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

Assignments

Where do computers store data?

*CPU - Central Processing Unit — computer circuitry that
followed computer instructions in assembly

RAM - Random Access Memory - a computer’s short-term
memory where data is stored during program operation
When a program ends the memory in use “goes away”

*Hard disc storage - a computer’s long-term memory, this is
where data is stored when you need to preserve it across
re-starts.

Data is stored indefinitely
Can be modified by different processes

=Large sequences of numbers

How do computers store data?

Numbers are representations for electrical switches “transistors” that make up the

brains of the CPU

=All data is binary - 1s and Os
A single digit is called a “bit”
Bits come in groups of 8 called “bytes”

ascii

104

101

108

108

111

binary

01101000

01100101

01101100

01101100

01101111

All instructions can be translated into sequences of binary

*Numbers represent other types of data
ASCII - each byte represents a letter of the English alphabet

Unicode - similar encoding structure to ASCII but covers a wider range of characters
including non-English characters, emojis etc...

Images - represented by a 2D array of “pixels”

Each pixel is represented by 3 numbers: Red, Blue and Creen values 0-255

Binary Explained

https://www.youtube.com/watch?v=Xpk67YzOn5w

Addresses in Memory

=Computer memory operates just like an array - addresses and the spaces they represent
Spaces are measured in "bytes” of 8 bits

=Each space in memory is referred to by its

address
Value 504 stored at address Ox08 6‘:("6‘85 S
Address of value 504 stored at 0x38 0x08 T00 , 00 | 00 {00 , 00 ; O1 | F8
A pointer is a data object that holds an 8;((%(8) :
address 0x20 ,
Addresses can point to any type of data because they 8%%% :
simply point to any space in memory Ox38 00 T 08
Like a “contact” object that stores someone’s phone 0x40 , : : , , 1 :
number, doesn't store the actual person 0x48 . : | : . ! !

Pointers are also stored in memory

Pointers can point to other pointers! <follow down the
rabbit hole>

Pointers can either point to a single variable or an
array

Program Memory allocation

*As a program executes it interacts with the computer’s working memory
Code - Sets aside space for the code compiled instructions

Globals - Then sets aside space for global variables, static constants, string literals, things that get declared at
program initialization

Heap - As program executes this space of memory is used for local variables that get allocated and
deallocated (new or ‘malloc’ variables)

Stack - holds and serves the current instructions in order that they are received (First In First Out)
Both the heap and stack grow dynamically throughout the run of a program

If they meet in the middle that means the program has run out of memory

code : - heap -> <- stack

Pointer and Address Syntax in C

int *ptr; alsoworks!Programmer preference
int* ptr; // a variable of type “pointer to int” without assignment

int x = 123; //an int variable called “x” that stores “123”
ptr = &x; // store the address of “x” in “ptr”
*ptr X &x

* Means “pointer to type”

* placed after type indicates a pointer data type
Similar in java if you add [] after type you declare an array of that type

—1 | 123

int* means “pointer to int”

& means “address variable”
Placing an & before a variable name will give you the address in memory of that variable

https://www.youtube.com/watch?v=5VnDaHBi8dM < Binky!

https://www.youtube.com/watch?v=5VnDaHBi8dM

Dereferencing Pointers

int x = 123;
int* ptr = &x;
*ptr = 456;

printf (“new value of y:%d\n”, *ptr);

=Placing a * before a pointer dereferences the pointer
Means “follow this pointer” to the actual data
*ptr = <data> will update the data stored at the address the pointer is referring to ie ‘write to memory’
*ptr will read the data stored at the address indicated by the pointer
Accessing unused addresses causes a ‘segmentation fault’

A dangling pointer is one that points to a dead local variable
Data that is no longer in use

Dereferencing a dangling pointer is “undefined behavior” (UB)
UB means ANYTHING could happen

Program could crash(best case), silently fail(worst case)
GCC can catch this kind of error with a warning, but not always

Strings in C

char sl1[] = {'c’", ‘s’, ‘e’, “\0'};
char s2[] = “cse”;
char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters
- "null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C
printf (“hello, “ + myName + “\n”); // will not work

CSE 374 AU 20 - KASEY CHAMPION 9

Printf — print format function

=Produces string literals to stdout based on given string with format tags
Format tags are stand ins for where something should be inserted into the string literal
%s - string with null termination, %d - int, %f - float
Number of format tags should match number of arguments

Format tags will be replaced with arguments in given order

=Defined in stdio.h

=printf(“format string %s”, stringVariable);
Replaces %s with variable given

printf (“hello, %s\n”, myName) ;

https://en.wikipedia.org/wiki/Printf format string

https://en.wikipedia.org/wiki/Printf_format_string

Questions

CSE 374 AU 20 - KASEY CHAMPION 12

Binary

https://www.voutube.com/watch?v=LpuPe81bc2w < binary explained

Base 2 numbering system

Convention: starts with Ob
o Review: Number Systems
Ob110 in decimal

0b110=(1%22)+(1*21)+(0*2°0)=4+2+6 e Onebyteis...

o Two hex nibbles
o Eight binary bits
o At most, three decimal digits (2-5-5)

e Thus, one nibbleis four bits!
o 0x0=0b0000=0
o O0xF=0bl111=15

e Helpful exercise: count to 15 in binary!

o How about32in hex?= 0>< 20

s L's

Bina

0000
0001
0010

L.

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

|

I

https://www.youtube.com/watch?v=LpuPe81bc2w

Example: Returning a String

char* fool();
Fix: Output Parameter (live)

int main () {
char* s = fool(); #include<string.h>
. “ . . . void foo(char* output, int max_len); W
printf (“string: %s\n”, s); int main() { e
} char s[256]; ~_
) foo(s, 256);
char foo () { printf ("String: F&xa™; 8); “gb
char message[256] = “Hello!”;) g
veild. foo (eha¥* eutput, 1At max len) A

strncpy (output, "Hello!", max len);
strncpy | =

}

return message;

https://godbolt.org/z/sxddq?7

https://godbolt.org/z/sxddq7

