- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g & X
i g B0

4 P > 'g:?* : . 1,"
fﬁ?‘ﬁ?g.* :\:
Lecture Participation Poll #7
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e Ctu re 8 | ntrO tO C Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

Assignments

HWI1
HW!1 Grading Scripts revised

You can submit with “sh” now
More instructions coming to the doc
2 validations - number of arguments and if files exist

You can use whatever error message you like
HW2 coming Monday - more scripting
Review Assignment 1 coming Wednesday next week - scripting + intro to C

THANK YOU FOR ALL YOUR
PATIENCE!

Meet C

=|nvented to rewrite the Unix OS, successor to B

A “low level” language gives the developer the ability to wort C reference books

directly with memory and processes

Low level means it sits closer to assembly, the language the CPU uses The
Java is a “high level” language, compiles to bytecode, has a garbage
collector that manages memory for you standard SECOND EDITION
reference. el
=Useful for software that requires low-level fOS interaction Available A o\
Robotics, mobile, high performance software, drivers Kindl “b \
Compact language, human readable but few features compared to Java QILBINdic il
andinthe PROGRAMMING
LANGUAGE
=Ancestor of most modern languages UW
lib " DENNISM RITCHEE
"Java, C++, C# lorary. W' RITCHE

RENTICE HALL SOFTWARE SEAES

=Much syntax is shared

http://cslibrary.stanford.edu/101/EssentialC.pdf

http://cslibrary.stanford.edu/101/EssentialC.pdf

GCC

*GCC is the C compiler we will use

Translates C into assembly code
Java compiler takes java code and turns it into Java bytecode (when you install JDK you teach your computer to understand javanite code)
Assembly is the language of your CPU

=gcc [options] -o outputName filel.c file2.c
=gCC --version
=Can provide warnings for program crashes or failures, but don't trust it much

=Before compiling your code, gcc runs the C preprocessor on it
Removes comments
Handles preprocessor directives starting with #

=Options
-g enables debugging
-Wall checks for all warnings
-std=c11 uses the 2011 C standard, what we will use for this class

C Hello World

indi repr r directiv : ,
dicates preprocessor directive Header file to enable printf

#include <stdio.h»>

return type —int main(int argc, char** argv) arguments

{

“hello, world!\n” is a string of length

printf("Hello world\n”"): 15 where \n is one character but

contains the null terminator \0
successful return return O;

Save in file “hello.c”

Compile with command gcc hello.c
creates executable a.out

Compile with command gcc -o hello.exe hello.c
creates executable hello.exe

Run ./hello.exe

Hello World in C

#include

*Provides access to code in another file, similar to Java import statements

*#include<somefile.h> willinsert code in somefile.h into your C file
h files are called “header files”

#include <foo.h> // standard libraries
searches for foo.h in “system include” directories

#include “foo.h” // developer files

searches current directory, lets coder break project into smaller files (java does this automatically)

*Executed by preprocessor
Pulls in code before it is compiled
Includes work recursively, pulls in includes from headers that were directly included

=stdio.h provides foundational set of input and output functions
printf, stdout

http://www.cplusplus.com/reference/cstdio/

http://www.cplusplus.com/reference/cstdio/

Functions

=C programs are broken into functions
Named portion of code that can be referenced by code elsewhere
Similar to methods and classes in java

returnType functionName (type paraml, .., type paramN) {
// statements

Declaration - specifies the function name, return type Definition — declaration plus the code to run
and parameters

//definition
int square (int n) {
return n * n;

//declaration
int square (int n);

}

-The function header ending in ;

-Similar to interfaces in Java -You will get a Linker-error if an item is used but
-exist so you can call a function before you fully define it not defined (java equivalent of “symbol not

found”)

Main function

vold main (int argc, char** argv) {

printf (“hello, %$s\n”, argv[1l]);

argv is the array of inputs from the command line
Tokenized representation of the command line that invoked your program

argv[O] is the name of the program being run
argc stores the number of arguments ($#)+1
Like bash!

Main is the first function your program executes once it starts
Expect a return of O for successful execution or -1 for failure

Variables

«C variable types: int, char, double, arrays (details)

No Booleans, use int values of nonZero=true and O=false instead,
WARNING: opposite of bash

<type> <name> = <value> - Left side evaluates to locations = right side evaluates to values

int x = 1; // stores value 1 at location labeled x
char ¢ = "a’; // stores value a at location labeled c
double d = 2.5; // stores value 2.5 at location labeled d

int* xPtr = &x; // stores value of location x at location xPtr

x = 2; // stores value 2 at location x

*xPtr = 3; //stores value 3 at location xPtr

Much more on * and & tomorrow!

https://en.wikipedia.org/wiki/C_data_types

Global vs Local Variables

=Variables defined inside a function are local to that function
Can only be used by function within which they are defined
May have multiple instances (recursion)
Only "lives” until end of function

Space on stack allocated when reached, deallocated after block

=Variables defined outside functions are global and can be used anywhere in the file and by
any function
Will only ever be a single instance of a global variable
Lives until end of program

example.c
Space on stack allocated before main, deallocated after main global | int result = 0;
Should be avoided if possible for encapsulation int sumTo (int max) {local
1f (max == 1) return 1;
result = max + sumTo (max — 1);
return result;
}

The Stack

=An area of local memory set aside to hold local variables
*Functions like the stack data structure - first in first out

=When we call a function it allocates memory on the stack for all local variables
- Size of memory depends on datatype

“When the function returns the memory for the local variables is deallocated

=Java has been doing something similar in the background for you all along- garbage
collector

code globals heap -> <- stack

CSE 374 AU 20 - KASEY CHAMPION 12

Strings in C

char sl1[] = {'c’", ‘s’, ‘e’, “\0'};
char s2[] = “cse”;
char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters
- "null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C
printf (“hello, “ + myName + “\n”); // will not work

CSE 374 AU 20 - KASEY CHAMPION 13

Printf — print format function

=Produces string literals to stdout based on given string with format tags
Format tags are stand ins for where something should be inserted into the string literal
%s - string with null termination, %d - int, %f - float
Number of format tags should match number of arguments

Format tags will be replaced with arguments in given order

=Defined in stdio.h

=printf(“format string %s”, stringVariable);
Replaces %s with variable given

printf (“hello, %s\n”, myName) ;

https://en.wikipedia.org/wiki/Printf format string

https://en.wikipedia.org/wiki/Printf_format_string

- echo.c

Demo

Example: echo.c

#include <studio.h>
#include <stdlib.h>
#define EXIT SUCCESS = 0;
int main (int argc, char** argv)
{
for (int i1 = 1; i < argc; i++)

{

\

printf (“%s %, argv[i]);
}
printf (“\n”) ;

return EXIT SUCCESS;

