
Lecture 8:Intro to C
CSE 374: Intermediate
Programming Concepts and
Tools

1

Lecture Participation Poll #7

Log onto pollev.com/cse374
Or

Text CSE374 to 22333

http://pollev.com/cse374

Administrivia
Assignments

-HW1
- HW1 Grading Scripts revised

- You can submit with “.sh” now

- More instructions coming to the doc

- 2 validations – number of arguments and if files exist

- You can use whatever error message you like

-HW2 coming Monday – more scripting

-Review Assignment 1 coming Wednesday next week - scripting + intro to C

2CSE 374 AU 20 - KASEY CHAMPION

THANK YOU FOR ALL YOUR
PATIENCE!

Meet C

▪Invented to rewrite the Unix OS, successor to B

▪A “low level” language gives the developer the ability to work
directly with memory and processes
-Low level means it sits closer to assembly, the language the CPU uses
-Java is a “high level” language, compiles to bytecode, has a garbage

collector that manages memory for you

▪Useful for software that requires low-level fOS interaction
-Robotics, mobile, high performance software, drivers
-Compact language, human readable but few features compared to Java

▪Ancestor of most modern languages

▪Java, C++, C#

▪Much syntax is shared

3CSE 374 AU 20 - KASEY CHAMPIONhttp://cslibrary.stanford.edu/101/EssentialC.pdf

http://cslibrary.stanford.edu/101/EssentialC.pdf

GCC

▪GCC is the C compiler we will use
-Translates C into assembly code

- Java compiler takes java code and turns it into Java bytecode (when you install JDK you teach your computer to understand javanite code)

- Assembly is the language of your CPU

▪gcc [options] -o outputName file1.c file2.c

▪gcc --version

▪Can provide warnings for program crashes or failures, but don’t trust it much

▪Before compiling your code, gcc runs the C preprocessor on it
-Removes comments
-Handles preprocessor directives starting with #

▪Options
--g enables debugging
--Wall checks for all warnings
--std=c11 uses the 2011 C standard, what we will use for this class

4CSE 374 AU 20 - KASEY CHAMPION

C Hello World

#include <stdio.h>

int main(int argc, char** argv)

{

 printf(“Hello world\n”);

 return 0;

}

5CSE 374 AU 20 - KASEY CHAMPION

Header file to enable printf
indicates preprocessor directive

Save in file “hello.c”
Compile with command gcc hello.c

creates executable a.out
Compile with command gcc –o hello.exe hello.c

creates executable hello.exe
Run ./hello.exe

return type arguments

“hello, world!\n” is a string of length
15 where \n is one character but
contains the null terminator \0

successful return

Hello World in C
6CSE 374 AU 20 - KASEY CHAMPION

#include

▪Provides access to code in another file, similar to Java import statements

▪#include<somefile.h> will insert code in somefile.h into your C file
-.h files are called “header files”

-#include <foo.h> // standard libraries
- searches for foo.h in “system include” directories

-#include “foo.h” // developer files
- searches current directory, lets coder break project into smaller files (java does this automatically)

▪Executed by preprocessor
-Pulls in code before it is compiled

-Includes work recursively, pulls in includes from headers that were directly included

▪stdio.h provides foundational set of input and output functions
-printf, stdout

7CSE 374 AU 20 - KASEY CHAMPIONhttp://www.cplusplus.com/reference/cstdio/

http://www.cplusplus.com/reference/cstdio/

Functions

▪C programs are broken into functions
-Named portion of code that can be referenced by code elsewhere

-Similar to methods and classes in java

returnType functionName (type param1, …, type paramN) {
 // statements
}

8CSE 374 AU 20 - KASEY CHAMPION

Definition – declaration plus the code to run

//definition
int square (int n) {
 return n * n;
}

-You will get a Linker-error if an item is used but
not defined (java equivalent of “symbol not
found”)

Declaration – specifies the function name, return type
and parameters

//declaration
int square (int n);

-The function header ending in ;
-Similar to interfaces in Java
-exist so you can call a function before you fully define it

Main function

void main(int argc, char** argv) {

 printf(“hello, %s\n”, argv[1]);

}
-argv is the array of inputs from the command line

-Tokenized representation of the command line that invoked your program

-argv[0] is the name of the program being run
-argc stores the number of arguments ($#)+1
-Like bash!

Main is the first function your program executes once it starts
Expect a return of 0 for successful execution or -1 for failure

9CSE 374 AU 20 - KASEY CHAMPION

Variables

▪C variable types: int, char, double, arrays (details)
-No Booleans, use int values of nonZero=true and 0=false instead,

- WARNING: opposite of bash

<type> <name> = <value> - Left side evaluates to locations = right side evaluates to values

int x = 1; // stores value 1 at location labeled x

char c = ’a’; // stores value a at location labeled c

double d = 2.5; // stores value 2.5 at location labeled d

int* xPtr = &x; // stores value of location x at location xPtr

x = 2; // stores value 2 at location x

*xPtr = 3; //stores value 3 at location xPtr

10CSE 374 AU 20 - KASEY CHAMPION

Much more on * and & tomorrow!

https://en.wikipedia.org/wiki/C_data_types

Global vs Local Variables

▪Variables defined inside a function are local to that function
-Can only be used by function within which they are defined

-May have multiple instances (recursion)

-Only ”lives” until end of function
- Space on stack allocated when reached, deallocated after block

▪Variables defined outside functions are global and can be used anywhere in the file and by
any function
-Will only ever be a single instance of a global variable

-Lives until end of program
- Space on stack allocated before main, deallocated after main

-Should be avoided if possible for encapsulation

11CSE 374 AU 20 - KASEY CHAMPION

global int result = 0;
int sumTo(int max) {
 if (max == 1) return 1;
 result = max + sumTo(max – 1);
 return result;
}

local

example.c

The Stack

▪An area of local memory set aside to hold local variables

▪Functions like the stack data structure – first in first out

▪When we call a function it allocates memory on the stack for all local variables
-Size of memory depends on datatype

▪When the function returns the memory for the local variables is deallocated

▪Java has been doing something similar in the background for you all along- garbage
collector

12CSE 374 AU 20 - KASEY CHAMPION

Strings in C
char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

13CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

14CSE 374 AU 20 - KASEY CHAMPIONhttps://en.wikipedia.org/wiki/Printf_format_string

https://en.wikipedia.org/wiki/Printf_format_string

Demo: echo.c
15CSE 374 AU 20 - KASEY CHAMPION

Example: echo.c
#include <studio.h>

#include <stdlib.h>

#define EXIT_SUCCESS = 0;

int main (int argc, char** argv)

{

 for (int i = 1; i < argc; i++)

 {

 printf(“%s “, argv[i]);

 }

 printf(“\n”);

 return EXIT_SUCCESS;

}
16CSE 374 AU 20 - KASEY CHAMPION

