
Lecture 7: Intro to C
Programming

CSE 374: Intermediate
Programming Concepts and
Tools

1

http://pollev.com/cse374

Administrivia

Assignments
-Hw1 turn in live
-EX 4 did not release
-Poll Everywhere is being mean
-Review assignment coming- find groups!
-Use tickets on discord

Sorry Kasey is behind on messages- will get back to you today!

2CSE 374 AU 20 - KASEY CHAMPION

Regex
▪Regular expressions (regex) are a set of rules for matching patterns in text

- Used across programming languages and math
- Different applications might have slightly different rules (yeah, it’s frustrating…)

▪Regex patterns can include characters, anchors and modifiers
- Characters = the literal characters you are trying to match
- Anchors – set the position in the line where a pattern may be found

- ^ anchor to front
- $ anchor to end

- Modifiers – modify the range of text pattern can match
- * matches any number of characters
- [set of chars]

▪Regex basics, let P be our pattern and S be a string to match
- P can be a single character (ex: a) to match S of the same single character
- P

1
P

2
 matches S if S=S

1
S

2
 where P

1
 = S

1
 and P

2
 = S

2
- P

1
|P

2
matches S if P1 or P2 matches S

▪grep –e finds using regex
- By default grep matches against .*p.*

3CSE 374 AU 20 - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse374/20su/lectures/05/Lec_2-Wed_ink.pdf
https://regex101.com/
https://regexcrossword.com/
https://regexone.com/

Regex special characters
\ - escape following character

. – matches any single character at least once
-c.t matches {cat, cut, cota}

| - or, enables multiple patterns to match against
-a|b matches {a} or {b}

* - matches 0 or more of the previous pattern
(greedy match)

-a* matches {, a, aa, aaa, …}

? – matches 0 or 1 of the previous pattern
-a? matches {, a}

+ - matches one or more of previous pattern
-a+ matches {a, aa, aaa, …}

{n} – matches exactly n repetitions of the
preceding

-a{3} matches {aaa}

4CSE 374 AU 20 - KASEY CHAMPION

() – groups patterns for order of operations
-(abc) matches {abc, 1abc2, 123abc}

[] – contains literals to be matched, single or range
-[a-b] matches all lowercase letters

^ - anchors to beginning of line
- ^// matches lines that start with //

$ - anchors to end of line
-;$ matches lines that end with ;
\d – matches one digit

-\d+ matches {1, 2, 3, 4, …}

\s – matches whitespace character
-\s matches {‘ ‘, \t, etc…}

Useful patterns

▪[a-zA-Z] - matches all English letters

▪[0-9]* - matches list of numbers

▪(abc)* - match any number of “abc”s

▪(foo | bar) – matches either “foo” or “bar”

▪^\d+$ - whole numbers (\d stands in for digit, +one or more digits) (regexpal)

▪^\d*\.\d+$ - numbers with decimals (regexpal)

▪^\b\d{3}[-.]?\d{3}[-.]?\d{4}\b$ - phone number (regexpal)

▪[^([a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,6}*$] – emails (regexpal)

5CSE 374 AU 20 - KASEY CHAMPION

https://www.regexpal.com/?fam=104020
https://www.regexpal.com/?fam=104021
https://www.regexpal.com/?fam=99127
https://www.regexpal.com/?fam=104026
https://digitalfortress.tech/tricks/top-15-commonly-used-regex/

Regex Practice

▪Regex for date in format YYYY-MM-DD

▪Year - [12]\d{3} – start with 1 or 2 followed by 3 digits

▪Month - (0[1-9]|1[0-2]) – 0 followed by a digit 1-9 OR 1 followed by a digit 0-2

▪Day – (0[1-9]|[12]\d|3[01]) – 0 followed by digit 1-9 OR 1 or 2 followed by any digit OR 3
followed by 0 or 1

▪Final - ([12]\d{3}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01]))

6CSE 374 AU 20 - KASEY CHAMPION

https://www.regexpal.com/?fam=104039

Meet C

▪Invented to rewrite the Unix OS, successor to B

▪A “low level” language gives the developer the ability to work
directly with memory and processes
-Low level means it sits closer to assembly, the language the CPU uses
-Java is a “high level” language, compiles to bytecode, has a garbage

collector that manages memory for you

▪Useful for software that requires low-level fOS interaction
-Robotics, mobile, high performance software, drivers
-Compact language, human readable but few features compared to Java

▪Ancestor of most modern languages

▪Java, C++, C#

▪Much syntax is shared

7CSE 374 AU 20 - KASEY CHAMPION

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www.cplusplus.com/

GCC

▪GCC is the C compiler we will use
-Translates C into assembly code

- Java compiler takes java code and turns it into Java bytecode (when you install JDK you teach your computer to understand javanite code)

- Assembly is the language of your CPU

▪gcc [options] -o outputName file1.c file2.c

▪gcc --version

▪Can provide warnings for program crashes or failures, but don’t trust it much

▪Before compiling your code, gcc runs the C preprocessor on it
-Removes comments
-Handles preprocessor directives starting with #

▪Options
--g enables debugging
--Wall checks for all warnings
--std=c11 uses the 2011 C standard, what we will use for this class

8CSE 374 AU 20 - KASEY CHAMPION

C Hello World

#include <stdio.h>

int main(int argc, char** argv)

{

 printf(“Hello world\n”);

 return 0;

}

9CSE 374 AU 20 - KASEY CHAMPION

Save in file “hello.c”
Compile with command gcc hello.c

creates executable a.out
Compile with command gcc –o hello.exe hello.c

creates executable hello.exe
Run ./hello.exe

Hello World in C
10CSE 374 AU 20 - KASEY CHAMPION

#include

▪Provides access to code in another file, similar to Java import statements

▪#include<somefile.h> will insert code in somefile.h into your C file
-.h files are called “header files”

-#include <foo.h> // standard libraries
- searches for foo.h in “system include” directories

-#include “foo.h” // developer files
- searches current directory, lets coder break project into smaller files (java does this automatically)

▪Executed by preprocessor
-Pulls in code before it is compiled

-Includes work recursively, pulls in includes from headers that were directly included

▪stdio.h provides foundational set of input and output functions
-printf, stdout

11CSE 374 AU 20 - KASEY CHAMPION

http://www.cplusplus.com/reference/cstdio/

Functions

▪C programs are broken into functions
-Named portion of code that can be referenced by code elsewhere

-Similar to methods and classes in java

returnType functionName (type param1, …, type paramN) {
 // statements
}

12CSE 374 AU 20 - KASEY CHAMPION

Definition – declaration plus the code to run

//definition
int square (int n) {
 return n * n;
}

-You will get a Linker-error if an item is used but
not defined (java equivalent of “symbol not
found”)

Declaration – specifies the function name, return type
and parameters

//declaration
int square (int n);

-The function header ending in ;
-Similar to interfaces in Java
-exist so you can call a function before you fully define it

Main function

void main(int argc, char** argv) {

 printf(“hello, %s\n”, argv[1]);

}
-argv is the array of inputs from the command line

-Tokenized representation of the command line that invoked your program

-argv[0] is the name of the program being run
-argc stores the number of arguments ($#)+1
-Like bash!

Main is the first function your program executes once it starts
Expect a return of 0 for successful execution or -1 for failure

13CSE 374 AU 20 - KASEY CHAMPION

Variables

▪C variable types: int, char, double, arrays (details)
-No Booleans, use int values of nonZero=true and 0=false instead,

- WARNING: opposite of bash

<type> <name> = <value> - Left side evaluates to locations = right side evaluates to values

int x = 1; // stores value 1 at location labeled x

char c = ’a’; // stores value a at location labeled c

double d = 2.5; // stores value 2.5 at location labeled d

int* xPtr = &x; // stores value of location x at location xPtr

x = 2; // stores value 2 at location x

*xPtr = 3; //stores value 3 at location xPtr

14CSE 374 AU 20 - KASEY CHAMPION

Much more on * and & tomorrow!

https://en.wikipedia.org/wiki/C_data_types

Global vs Local Variables

▪Variables defined inside a function are local to that function
-Can only be used by function within which they are defined

-May have multiple instances (recursion)

-Only ”lives” until end of function
- Space on stack allocated when reached, deallocated after block

▪Variables defined outside functions are global and can be used anywhere in the file and by
any function
-Will only ever be a single instance of a global variable

-Lives until end of program
- Space on stack allocated before main, deallocated after main

-Should be avoided if possible for encapsulation

15CSE 374 AU 20 - KASEY CHAMPION

int result = 0;
int sumTo(int max) {
 if (max == 1) return 1;
 result = max + sumTo(max – 1);
 return result;
}

The Stack

▪An area of local memory set aside to hold local variables

▪Functions like the stack data structure – first in first out

▪When we call a function it allocates memory on the stack for all local variables
-Size of memory depends on datatype

▪When the function returns the memory for the local variables is deallocated

▪Java has been doing something similar in the background for you all along- garbage
collector

16CSE 374 AU 20 - KASEY CHAMPION

Strings in C
char s1[] = {’c’, ‘s’, ‘e’, ‘\0’};

char s2[] = “cse”;

char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters

- “null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C

printf(“hello, “ + myName + “\n”); // will not work

17CSE 374 AU 20 - KASEY CHAMPION

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

a q s h e l l o \0 r

Printf – print format function

▪Produces string literals to stdout based on given string with format tags
-Format tags are stand ins for where something should be inserted into the string literal

-%s – string with null termination, %d – int, %f – float

-Number of format tags should match number of arguments
- Format tags will be replaced with arguments in given order

▪Defined in stdio.h

▪printf(“format string %s”, stringVariable);
-Replaces %s with variable given

-printf(“hello, %s\n”, myName);

18CSE 374 AU 20 - KASEY CHAMPION

https://en.wikipedia.org/wiki/Printf_format_string

Demo: echo.c
19CSE 374 AU 20 - KASEY CHAMPION

Example: echo.c

#include <studio.h>

#include <stdlib.h>

#define EXIT_SUCCESS = 0;

int main (int argc, char** argv) {

 for (int i = 1; i < argc; i++) {

 printf(“%s “, argv[i]);

 }

 printf(“\n”);

 return EXIT_SUCCESS;

}

20CSE 374 AU 20 - KASEY CHAMPION

Arrays in C
▪datatype name[length]
▪Contiguous block of memory

▪C doesn’t pass arrays around like ints, but rather passes the references to the array
- Just like Java

▪Each item in array has an address based off of initial start item which is at 0

▪Arrays must be declared with a known length (so compiler can allocate space)
- This size is not stored like in Java, you have to save length as a separate variable you pass around

▪No default values, arrays will hold whatever was in that spot before you declared it so accessing
those addresses will cause errors

char arr[] = “cse”;

char* ptr = arr;

char letter_e = ptr[2]; // synonymous to *(ptr + 2)

int myArr[10];

21CSE 374 AU 20 - KASEY CHAMPION

C style

▪C curly brace style
-Each curly brace is on its own line, not at the end of an instruction

▪C naming conventions
-Constants are ALL_CAPS with underscores for spaces

▪C white space conventions
-One declaration per line

22CSE 374 AU 20 - KASEY CHAMPION

Anatomy of a C program
// includes for functions & types

#include <stuff.h>

// symbolic constants

#define TRUE 1

#define FALSE 0

//global variables (if any)

Int x = 1;

// Function declarations

Void do_this(char, int)

Function definitions

Void do_this(char s, int m)

{

 //statements

}

<main method at end of file?>

23CSE 374 AU 20 - KASEY CHAMPION

