- .
-1«?« ‘;\'é:;) _~: A
¢ :Gﬂ- ’?‘:40;:*2..‘.
¢ U)"-\‘s‘:.k‘ ¢

g & X
i g B0

4 P > 'g:?* : . 1,"
fﬁ?‘ﬁ?g.* :\:
Lecture Participation Poll #7
" ':":"'r,;

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

LECtu re 7: |ntrO tO C CSE 374: Intermediate

Programming Concepts and

Programming | o

http://pollev.com/cse374

Administrivia

Assignments
Hw1 turn in live
EX 4 did not release
Poll Everywhere is being mean
Review assignment coming- find groups!
Use tickets on discord

Sorry Kasey is behind on messages- will get back to you today!

Regex

=Regular expressions (regex) are a set of rules for matching patterns in text
Used across programming languages and math
Different applications might have slightly different rules (yeabh, it's frustrating...)

=Regex patterns can include characters, anchors and modifiers
Characters = the literal characters you are trying to match

Anchors - set the position in the line where a pattern may be found
" anchor to front
$ anchor to end

Modifiers — modify the range of text pattern can match
* matches any number of characters
[set of chars]

“Regex basics, let P be our pattern and S be a string to match
P can be a single character (ex: a) to match S of the same single character
P.P, matches SifS=SS, where P, =S and P, = S,
P.IP, matches S if P1 or P2 matches S

=grep —e finds using regex
By default grep matches against .*p.*

httQSI[/ regexlOl.com/ https://regexcrossword.com/ httQSZ[/regexone.com/

https://courses.cs.washington.edu/courses/cse374/20su/lectures/05/Lec_2-Wed_ink.pdf
https://regex101.com/
https://regexcrossword.com/
https://regexone.com/

Regex special characters

\ - escape following character () - groups patterns for order of operations
. — matches any single character at least once (abc) matches {abc, labcz, 123abc)
c.t matches {cat, cut, cota) [] - contains literals to be matched, single or range
| - or, enables multiple patterns to match against - [a-b] matches all lowercase letters
alb matches {a} or {b) ~ - anchors to beginning of line
* — matches O or more of the previous pattern ~// matches lines that start with //

(greedy match)

S - anchors to end of line
a* matches {, a, aa, aaa, ..}

; S matches lines that end with ;
» — matches O or 1 of the previous pattern

22 matches (. a) \d — matches one digit

\d+ matches {1, 2, 3, 4, ..}
\'s — matches whitespace character
\s matches {' ', \t, etc..}

+ - matches one or more of previous pattern
a+ matches {a, aa, aaa, ..}

{n} - matches exactly n repetitions of the
preceding
a{3} matches {aaa}

Useful patterns

=[a-zA-Z] - matches all English letters
«[0-9]* - matches list of numbers
(abc) - match any number of “abc’s

*(foo | bar) - matches either “foo” or “bar”

="\d+$ - whole numbers (\d stands in for digit, +one or more digits) (regexpal)
=\d*\\d+$ - numbers with decimals (regexpal)
=\b\d{3}[-.]\d{3}[-.]7\d{4\b$ - phone number (regexpal)
«["([a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,6}*$] - emails (regexpal)

https://digitalfortress.tech/tricks/top-15-commonly-used-regex/

https://www.regexpal.com/?fam=104020
https://www.regexpal.com/?fam=104021
https://www.regexpal.com/?fam=99127
https://www.regexpal.com/?fam=104026
https://digitalfortress.tech/tricks/top-15-commonly-used-regex/

Regex Practice

=Regex for date in format YYYY-MM-DD
=Year - [12]\d{3} - start with 1 or 2 followed by 3 digits
*Month - (O[1-9][1[0-2]) - O followed by a digit 1-9 OR 1 followed by a digit 0-2

=Day - (0[1-9][[12]\d|3[01]) - O followed by digit 1-9 OR 1 or 2 followed by any digit OR 3
followed by O or 1

=Final - ([12\d{3}-(0[1-9][1[0-2])-(O[1-9][[12]\d|3[01]))

(regexpal)

https://www.regexpal.com/?fam=104039

Meet C

=|nvented to rewrite the Unix OS, successor to B

A “low level” language gives the developer the ability to wort C reference books

directly with memory and processes

Low level means it sits closer to assembly, the language the CPU uses The
Java is a “high level” language, compiles to bytecode, has a garbage
collector that manages memory for you standard SECOND EDITION
reference. el
=Useful for software that requires low-level fOS interaction Available A
Robotics, mobile, high performance software, drivers Kindl "“G \
Compact language, human readable but few features compared to Java QILBINdic il
andinthe PROGRAMMING
LANGUAGE
=Ancestor of most modern languages UW
. BRIAN W KlfRNK‘.H/\\!
JJava, C++, C# llbrary. Df”-.?.NISMRITCHIE.

MENTICE HALL SOFTWARE SERES

=Much syntax is shared

http://cslibrary.stanford.edu/101/EssentialC.pdf http://www.cplusplus.com/

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www.cplusplus.com/

GCC

*GCC is the C compiler we will use

Translates C into assembly code
Java compiler takes java code and turns it into Java bytecode (when you install JDK you teach your computer to understand javanite code)
Assembly is the language of your CPU

=gcc [options] -o outputName filel.c file2.c
=gCC --version
=Can provide warnings for program crashes or failures, but don't trust it much

=Before compiling your code, gcc runs the C preprocessor on it
Removes comments
Handles preprocessor directives starting with #

=Options
-g enables debugging
-Wall checks for all warnings
-std=c11 uses the 2011 C standard, what we will use for this class

C Hello World

#indi repr r directiv : ,
dicates preprocessor directive Header file to enable printf

#include <stdio.h»>

return type —int main(int argc, char** argv) arguments

{

“hello, world!\n” is a string of length

printf("Hello world\n”"): 15 where \n is one character but

contains the null terminator \0
successful return return O;

Save in file “hello.c”

Compile with command gcc hello.c
creates executable a.out

Compile with command gcc -o hello.exe hello.c
creates executable hello.exe

Run ./hello.exe

Hello World in C

#include

*Provides access to code in another file, similar to Java import statements

*#include<somefile.h> willinsert code in somefile.h into your C file
h files are called “header files”

#include <foo.h> // standard libraries
searches for foo.h in “system include” directories

#include “foo.h” // developer files

searches current directory, lets coder break project into smaller files (java does this automatically)

*Executed by preprocessor
Pulls in code before it is compiled
Includes work recursively, pulls in includes from headers that were directly included

=stdio.h provides foundational set of input and output functions
printf, stdout

http://www.cplusplus.com/reference/cstdio/

http://www.cplusplus.com/reference/cstdio/

Functions

=C programs are broken into functions
Named portion of code that can be referenced by code elsewhere
Similar to methods and classes in java

returnType functionName (type paraml, .., type paramN) {
// statements

Declaration - specifies the function name, return type Definition — declaration plus the code to run
and parameters

//definition
int square (int n) {
return n * n;

//declaration
int square (int n);

}

-The function header ending in ;

-Similar to interfaces in Java -You will get a Linker-error if an item is used but
-exist so you can call a function before you fully define it not defined (java equivalent of “symbol not

found”)

Main function

vold main (int argc, char** argv) {

printf (“hello, %$s\n”, argv[1l]);

argv is the array of inputs from the command line
Tokenized representation of the command line that invoked your program

argv[O] is the name of the program being run
argc stores the number of arguments ($#)+1
Like bash!

Main is the first function your program executes once it starts
Expect a return of O for successful execution or -1 for failure

Variables

«C variable types: int, char, double, arrays (details)

No Booleans, use int values of nonZero=true and O=false instead,
WARNING: opposite of bash

<type> <name> = <value> - Left side evaluates to locations = right side evaluates to values

int x = 1; // stores value 1 at location labeled x
char ¢ = "a’; // stores value a at location labeled c
double d = 2.5; // stores value 2.5 at location labeled d

int* xPtr = &x; // stores value of location x at location xPtr

x = 2; // stores value 2 at location x

*xPtr = 3; //stores value 3 at location xPtr

Much more on * and & tomorrow!

https://en.wikipedia.org/wiki/C_data_types

Global vs Local Variables

=Variables defined inside a function are local to that function
Can only be used by function within which they are defined
May have multiple instances (recursion)
Only "lives” until end of function

Space on stack allocated when reached, deallocated after block

=Variables defined outside functions are global and can be used anywhere in the file and by
any function
Will only ever be a single instance of a global variable
Lives until end of program

example.c
Space on stack allocated before main, deallocated after main global | int result = 0;
Should be avoided if possible for encapsulation int sumTo (int max) {local
1f (max == 1) return 1;
result = max + sumTo (max — 1);
return result;
}

The Stack

=An area of local memory set aside to hold local variables
*Functions like the stack data structure - first in first out

=When we call a function it allocates memory on the stack for all local variables
- Size of memory depends on datatype

“When the function returns the memory for the local variables is deallocated

=Java has been doing something similar in the background for you all along- garbage
collector

code globals heap -> <- stack

CSE 374 AU 20 - KASEY CHAMPION 16

Strings in C

char sl1[] = {'c’", ‘s’, ‘e’, “\0'};
char s2[] = “cse”;
char* s3 = “cse”;

All are equivalent ways to define a string in C

There are no “strings” in C, only arrays of characters
- "null terminated array of characters”

char* is another way to refer to strings in C

- Technically is a pointer to the first char in the series of chars for the string

Strings cannot be concatenated in C
printf (“hello, “ + myName + “\n”); // will not work

CSE 374 AU 20 - KASEY CHAMPION 17

Printf — print format function

=Produces string literals to stdout based on given string with format tags
Format tags are stand ins for where something should be inserted into the string literal
%s - string with null termination, %d - int, %f - float
Number of format tags should match number of arguments

Format tags will be replaced with arguments in given order

=Defined in stdio.h

=printf(“format string %s”, stringVariable);
Replaces %s with variable given

printf (“hello, %s\n”, myName) ;

https://en.wikipedia.org/wiki/Printf format string

https://en.wikipedia.org/wiki/Printf_format_string

- echo.c

Demo

Example: echo.c

#include <studio.h>
#include <stdlib.h>
#define EXIT SUCCESS = 0;
int main (1nt argc, char** argv) {
for (int 1 = 1; 1 < argc; i++) {
printf (“%s v, argv[i]);
}
printf (“\n”) ;
return EXIT SUCCESS;

Arrays in C

"datatype name[length]
=Contiguous block of memory

=C doesn't pass arrays around like ints, but rather passes the references to the array
Just like Java

=Each item in array has an address based off of initial start item which is at O

=Arrays must be declared with a known length (so compiler can allocate space)
This size is not stored like in Java, you have to save length as a separate variable you pass around

*No default values, arrays will hold whatever was in that spot before you declared it so accessing
those addresses will cause errors

char arr[] = “cse”;

char* ptr = arr;

char letter e = ptr[2]; // synonymous to *(ptr + 2)
int myArr[10];

C style

=C curly brace style

Each curly brace is on its own line, not at the end of an instruction

=C naming conventions
Constants are ALL_CAPS with underscores for spaces

*C white space conventions
One declaration per line

Anatomy of a C program

// includes for functions & types
#include <stuff.h>

/] symbolic constants
#define TRUE 1

#define FALSE O

//global variables (if any)
Intx =1;

// Function declarations
Void do_this(char, int)
Function definitions

Void do_this(char s, int m)
{

//statements

}

<main method at end of file?>

