e
oy M,,-;,‘f
e

Lecture Participation Poll #5

Log onto pollev.com/cse374
Or
Text CSE374 to 22333

CSE 374: Intermediate

I_e CtU re 6 . Re Programming Concepts and

Tools

http://pollev.com/cse374

Administrivia

CSE 374 AU 20 - KASEY CHAMPION 2

Bash Script Variables

“When writing scripts you can use the following default variables

$# - stores number of parameters entered

Ex:if [$# -1t 1] testsif script was passed less than 1 argument

$N - returns Nth argument passed to script

Ex: sort $1 passes first string passed into script into sort command

$0 - command name

Ex: echo “$0 needs 1 argument” prints “<name of script> needs 1 argument”
$* returns all arguments

$@ returns a space separated string containing all arguments
"$@” prevents args originally quoted from being read as multiple args

Control Flow in bash

=Bash has loops and conditionals like most languages

=|f Statements
if <test> then
<commands>
fi
Ex:
if ./myprogram args; then
echo “it works!”
else
echo “i1t didn’t work”
fi
Executes body if ./myprogram

succeeds (returns exit code 0)

=For loop =while loop

for <variable> in «list> while [test] do

do <commands>
<commands>
done
done
Ex:

for word in “list of words”
fo
echo Sword

done

“lists” in bash are just strings with white space separators

Conditionals

=Test evaluates Boolean comparison of two arguments

test “Sstrl” == “Sstr2” #tests string equality

test —-f result.txt #checks 1f file exists with —-f option
test $num —-eq 0 #checks integer equality with —-eq option

test $# -ne 2 #checks if ints are not equal with -ne option
Other useful options: -It -le -gt -ge

=Combine test with if by replacing “test” with]

1if [-f result.txt]; then
Spaces around the brackets and semicolon are required

*Bash understands Boolean logic syntax
&& and

|| or
I not

Common It Use Cases

=|f file contains

1f grep —g -E ‘myregex’ file.txt; then
echo “found it!”

f1

-q option “quiet” suppresses the output from the loop

If is gated on successful command execution (returns 0)

=|f incorrect number of arguments passed

if [$# -ne 2]; then
echo “$0 requires 2 arguments” >&2
exit 1

fi

Checks if number of arguments is not equal to 2, if so prints an error message to stderr and exits with error code

Common loop use cases

*|terate over files

. irect
for file in s(ls)<—A\\f“eS+d‘

do
if

fi

done

[-f S$file 1;

echo

\\$file//

then

ories

=lterate over arguments to script
while [S$# -gt 0]
do

echo $*

shift

done

Shift command moves through
list of arguments

Similar to .next in Java Scanner

Exit Command

*Ends a script’s execution immediately
Like “return”

=End scripts with a code to tell the computer whether the script was successful or had an
error

=0 = successful
exit without a number defaults to O
exlit

exit O

s*Non O = error
exit 1

Scripting demo: combine

Glob patterns

=Syntax to replace a pattern with a list of file names that all match that pattern
Enables you to pass multiple file names as arguments without typing them out individually
Pattern matches are based on location within file directory

*Wildcard - * - anything goes here
EX: echo src/*
Src/filel.txt src/file2.txt src/file3.txt
Example uses

echo * - prints every file/folder in current directory

echo *.txt - finds all files with that extension within directory

echo /bin/python* - finds all files within that path because they start with that string
cp src/* dest/ - copies all files from one directory to another

find —-name ".txt’ recursively finds files ending in .txt

Regex

=Regular expressions (regex) are a set of rules for matching patterns in text
Used across programming languages and math
Different applications might have slightly different rules (yeabh, it's frustrating...)

=Regex patterns can include characters, anchors and modifiers
Characters = the literal characters you are trying to match

Anchors - set the position in the line where a pattern may be found
" anchor to front
$ anchor to end

Modifiers — modify the range of text pattern can match
* matches any number of characters
[set of chars]

“Regex basics, let P be our pattern and S be a string to match
P can be a single character (ex: a) to match S of the same single character
P.P, matches SifS=SS, where P, =S and P, = S,
P.IP, matches S if P1 or P2 matches S

=grep —e finds using regex
By default grep matches against .*p.*

httQS:[/ regexlOl.com/ https://regexcrossword.com/ httQSZ[/[regexone.com/

https://courses.cs.washington.edu/courses/cse374/20su/lectures/05/Lec_2-Wed_ink.pdf
https://regex101.com/
https://regexcrossword.com/
https://regexone.com/

Regex special characters

\ - escape following character () - groups patterns for order of operations
. — matches any single character at least once [] - contains literals to be matched, single or range
c.t matches {cat, cut, cota} [a-b] matches all lowercase letters

| - or, enables multiple patterns to match against”™ - anchors to beginning of line
alb matches {a} or {b} ~// matches lines that start with //

« - matches O or more of the previous pattern ~ $ - anchors to end of line

(greedy match) ; $ matches lines that end with ;
a* matches {, a, aa, aaa, ..}

» — matches O or 1 of the previous pattern
a? matches {, a}

+ - matches one or more of previous pattern
a+ matches {a, aa, aaa, ..}

{n} - matches exactly n repetitions of the
preceding
a{3} matches {aaa}

Useful patterns

=[a-zA-Z] - matches all English letters
«[0-9]* - matches list of numbers
(abc) - match any number of “abc’s

*(foo | bar) - matches either “foo” or “bar”

grep and regex

=grep —e uses "extended” regex

Grep regex demo

