
Lecture 5: Scripting with
Bash

CSE 374: Intermediate
Programming Concepts and
Tools

1

Administrivia

▪Find partners on discord!

▪Thank you for all your #feedback !
-Self goal to post slide pre lecture

-Poll everywhere is still being gd annoying

-Having issues connecting to klaatu from outside us, download VM:
https://www.cs.washington.edu/lab/software/linuxhomevm

-Gradescope auto-grading shenanigans – please pay attention to the hints for formatting needs

▪Homework 1 finally live
-Calendar with deadlines

2CSE 374 AU 20 - KASEY CHAMPION

https://www.cs.washington.edu/lab/software/linuxhomevm

Finish redirection

▪cmd > file sends stdout to file

▪cmd 2> file sends stderr to file

▪cmd 1> output.txt 2> error.txt redirects both stdout and stderr to files

▪cmd < file accepts input from file
-Instead of directly putting arg in command, pass args in from given file

-cat file1.txt file2.txt file3.txt or cat < fileList.txt

▪What is the difference between | and >?
-Pipe is used to pass output to another program or utility

-Redirect is used to pass output to either a file or stream

-thing1 > thing2 runs thing1 and then sends the stdout stream to thing2, if these are files thing2 will be
overwritten

-thing1 > tempFile && thing2 <tempFile sends stdout of thing1 to stdin of thing2 without overwriting files
- Equivalent to thing1 | thing2 much more elegant!

3CSE 374 AU 20 - KASEY CHAMPIONhttps://askubuntu.com/questions/172982/what-is-the-difference-between-redirection-and-pipe

https://askubuntu.com/questions/172982/what-is-the-difference-between-redirection-and-pipe

Transferring files between local and remote

▪tar – tape archive – compresses directory of files for easy transfer (like zip or archive)
-tar -c <directory to compress>

- tar –c –v –f myTarFile.tar /home/champk/

- -c – creates new .tar archive file

- -v - Verbosely show the tar process

- -f - to decide name of tar file

-tar –x <file to extract>
- tar –x –v myTarFile.tar

▪wget – non-interactive download of files from the web supporting http, https and FTP
- Non interactive means it can work in the background (helpful if the files take a while)
-wget http://website.come/files/file.zip

▪Scp – secure copy – uses ssh protocol to transfer files between different hosts
-scp user@remote.host:file.txt /local/directory copies file.txt from remote host to local directory
-scp file.txt user@remote.host:/remote/directory/ copies file.txt from local host to remote

directory

▪You can always use a file transfer GUI like FileZilla uses FTP or SFTP, available for all platforms

4CSE 374 AU 20 - KASEY CHAMPION

https://filezilla-project.org/

Writing Scripts

▪Instead of writing commands directly into terminal save them in a file
-Use file extension “.sh”

▪Bash can run these files as executables
-Add line at top of file to tell computer this should be run using bash

#! /bin/sh

▪# by itself makes a comment
-Always include header comment with usage instructions

▪Give the file execution permissions
chmod u+x myscript.sh

▪Stop bash script on first failure by adding set –e at top of script

▪Bash scripts are especially helpful

5CSE 374 AU 20 - KASEY CHAMPIONDemo of making script

https://www.loom.com/share/276e9a85a2e143faadf904944207614f

Bash Script Variables

▪When writing scripts you can use the following default variables

$# - stores number of parameters entered

Ex: if [$# -lt 1] tests if script was passed less than 1 argument

$N - returns Nth argument passed to script

Ex: sort $1 passes first string passed into script into sort command

$0 – command name

Ex: echo “$0 needs 1 argument” prints “<name of script> needs 1 argument”

$* returns all arguments

$@ returns a space separated string containing all arguments
”$@” prevents args originally quoted from being read as multiple args

6CSE 374 AU 20 - KASEY CHAMPION

Control Flow in bash
▪Bash has loops and conditionals like most languages

▪If Statements

if <test> then

 <commands>

fi

Ex:

if ./myprogram args; then

 echo “it works!”

else

 echo “it didn’t work”

fi

Executes body if ./myprogram

succeeds (returns exit code 0)

7CSE 374 AU 20 - KASEY CHAMPION

▪For loop

for <variable> in <list>

do

 <commands>

done

Ex:

for word in “list of words”

fo

 echo $word

done

“lists” in bash are just strings with white space separators

▪while loop

while [test] do

 <commands>

done

Conditionals
▪Test evaluates Boolean comparison of two arguments

test “$str1” == “$str2” #tests string equality

test –f result.txt #checks if file exists with –f option

test $num –eq 0 #checks integer equality with –eq option

test $# -ne 2 #checks if ints are not equal with –ne option
- Other useful options: -lt –le –gt –ge

▪Combine test with if by replacing “test” with []

if [-f result.txt]; then
•Spaces around the brackets and semicolon are required

•Bash understands Boolean logic syntax
•&& and
• || or
• ! not

8CSE 374 AU 20 - KASEY CHAMPION

Common If Use Cases
▪If file contains

if grep –q –E ‘myregex’ file.txt; then

 echo “found it!”

fi

-q option “quiet” suppresses the output from the loop

If is gated on successful command execution (returns 0)

▪If incorrect number of arguments passed

if [$# -ne 2]; then

 echo “$0 requires 2 arguments” >&2

 exit 1

fi

Checks if number of arguments is not equal to 2, if so prints an error message to stderr and exits with error code

9CSE 374 AU 20 - KASEY CHAMPION

Common loop use cases

▪Iterate over files

for file in $(ls)

do

 if [-f $file]; then

 echo “$file”

 fi

done

10CSE 374 AU 20 - KASEY CHAMPION

<- All files + directories
▪Iterate over arguments to script

while [$# -gt 0]

do

 echo $*

 shift

done

Shift command moves through
list of arguments

Similar to .next in Java Scanner

Exit Command

▪Ends a script’s execution immediately
-Like “return”

▪End scripts with a code to tell the computer whether the script was successful or had an
error

▪0 = successful
-exit without a number defaults to 0

exit
exit 0

▪Non 0 = error
exit 1

11CSE 374 AU 20 - KASEY CHAMPION

Scripting demo: combine
12CSE 374 AU 20 - KASEY CHAMPION

Glob patterns

▪Syntax to replace a pattern with a list of file names that all match that pattern
-Enables you to pass multiple file names as arguments without typing them out individually

-Pattern matches are based on location within file directory

▪Wildcard - * - anything goes here
-EX: echo src/*

-Src/file1.txt src/file2.txt src/file3.txt

-Example uses
- echo * - prints every file/folder in current directory

- echo *.txt - finds all files with that extension within directory

- echo /bin/python* - finds all files within that path because they start with that string

- cp src/* dest/ - copies all files from one directory to another

13CSE 374 AU 20 - KASEY CHAMPION

Regex
▪Regular expressions (regex) are a set of rules for matching patterns in text

- Used across programming languages and math
- Different applications might have slightly different rules (yeah, it’s frustrating…)

▪Regex patterns can include characters, anchors and modifiers
- Characters = the literal characters you are trying to match
- Anchors – set the position in the line where a pattern may be found

- ^ anchor to front
- $ anchor to end

- Modifiers – modify the range of text pattern can match
- * matches any number of characters
- [set of chars]

▪Regex basics, let P be our pattern and S be a string to match
- P can be a single character (ex: a) to match S of the same single character
- P

1
P

2
 matches S if S=S

1
S

2
 where P

1
 = S

1
 and P

2
 = S

2
- P

1
|P

2
matches S if P1 or P2 matches S

▪grep –e finds using regex
- By default grep matches against .*p.*

14CSE 374 AU 20 - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse374/20su/lectures/05/Lec_2-Wed_ink.pdf

Regex special characters
\ - escape following character

. – matches any single character at least once
-c.t matches {cat, cut, cota}

| - or, enables multiple patterns to match against
-a|b matches {a} or {b}

* - matches 0 or more of the previous pattern
(greedy match)

-a* matches {, a, aa, aaa, …}

? – matches 0 or 1 of the previous pattern
-a? matches {, a}

+ - matches one or more of previous pattern
-a+ matches {a, aa, aaa, …}

{n} – matches exactly n repetitions of the
preceding

-a{3} matches {aaa}

15CSE 374 AU 20 - KASEY CHAMPION

() – groups patterns for order of operations

[] – contains literals to be matched, single or range
-[a-b] matches all lowercase letters

^ - anchors to beginning of line

$ - anchors to end of line

Useful patterns

▪[^abc] matches everything NOT abc

▪[a-zA-Z] matches all English letters

▪[0-9]* matches list of numbers

16CSE 374 AU 20 - KASEY CHAMPION

https://courses.cs.washington.edu/courses/cse374/20sp/lectur
es/lecture6history

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/lecture6history
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/lecture6history

