o
S L

e DL,
o i

n

Lecture 5: Scripting with | cses memeda

Programming Concepts and

B a S h Tools

Administrivia
=*Find partners on discord!

*Thank you for all your #feedback !
Self goal to post slide pre lecture
Poll everywhere is still being gd annoying

Having issues connecting to klaatu from outside us, download VM:
https://www.cs.washington.edu/lab/software/linuxhomevm

Gradescope auto-grading shenanigans - please pay attention to the hints for formatting needs

*Homework 1 finally live
Calendar with deadlines

https://www.cs.washington.edu/lab/software/linuxhomevm

Finish redirection

=cmd > file sends stdout to file
=cmd 2> file sends stderrto file
=cmd 1> output.txt 2> error.txt redirects both stdout and stderrto files

cmd < file accepts input from file
Instead of directly putting arg in command, pass args in from given file
cat filel.txt file2.txt file3d.txtorcat < filelist.txt

“What is the difference between | and >?
Pipe is used to pass output to another program or utility
Redirect is used to pass output to either a file or stream

thingl > thing2 runs thing! and then sends the stdout stream to thing2, if these are files thing2 will be
overwritten

thingl > tempFile && thing2 <tempFile sends stdout of thingl to stdin of thing2 without overwriting files

Equivalent to thing1 | thing2 much more elegant!

https://askubuntu.com/questions/172982/what-is-the-difference-between-redirection-and-pipe

https://askubuntu.com/questions/172982/what-is-the-difference-between-redirection-and-pipe

ransterring files between local and remote

=tar - tape archive - compresses directory of files for easy transfer (like zip or archive)
tar -c <directory to compress>
tar —c¢ -v -f myTarFile.tar /home/champk/
-c - creates new .tar archive file
-v - Verbosely show the tar process
-f - to decide name of tar file

tar —x <file to extract>

tar —x -v myTarFile.tar

=wget — non-interactive download of files from the web supporting http, https and FTP
Non interactive means it can work in the background (helpful if the files take a while)

wget http://website.come/files/file.zip

=Scp - secure copy - uses ssh protocol to transfer files between different hosts
scp user@remote.host:file.txt /local/directory copies file.txt from remote host to local directory

Zcp file.txt user@Qremote.host:/remote/directory/ copies file.txt from local hostto remote
irectory

*You can always use a file transfer GUI like FileZilla uses FTP or SFTP, available for all platforms

https://filezilla-project.org/

Writing Scripts

sInstead of writing commands directly into terminal save them in a file
Use file extension “sh”

*Bash can run these files as executables
Add line at top of file to tell computer this should be run using bash

#! /bin/sh

by itself makes a comment
Always include header comment with usage instructions

=Give the file execution permissions
chmod u+x myscript.sh

=Stop bash script on first failure by adding set —e at top of script

*Bash scripts are especially helpful

Demo of making script

https://www.loom.com/share/276e9a85a2e143faadf904944207614f

Bash Script Variables

“When writing scripts you can use the following default variables

$# - stores number of parameters entered

Ex:if [$# -1t 1] testsif script was passed less than 1 argument

$N - returns Nth argument passed to script

Ex: sort $1 passes first string passed into script into sort command

$0 - command name

Ex: echo “$0 needs 1 argument” prints “<name of script> needs 1 argument”
$* returns all arguments

$@ returns a space separated string containing all arguments
"$@” prevents args originally quoted from being read as multiple args

Control Flow in bash

=Bash has loops and conditionals like most languages

=|f Statements
if <test> then
<commands>
fi
Ex:
if ./myprogram args; then
echo “it works!”
else
echo “i1t didn’t work”
fi
Executes body if ./myprogram

succeeds (returns exit code 0)

=For loop =while loop

for <variable> in «list> while [test] do

do <commands>
<commands>
done
done
Ex:

for word in “list of words”
fo
echo Sword

done

“lists” in bash are just strings with white space separators

Conditionals

=Test evaluates Boolean comparison of two arguments

test “Sstrl” == “Sstr2” #tests string equality

test —-f result.txt #checks 1f file exists with —-f option
test $num —-eq 0 #checks integer equality with —-eq option

test $# -ne 2 #checks if ints are not equal with -ne option
Other useful options: -It -le -gt -ge

=Combine test with if by replacing “test” with]

1if [-f result.txt]; then
Spaces around the brackets and semicolon are required

*Bash understands Boolean logic syntax
&& and

|| or
I not

Common It Use Cases

=|f file contains

1f grep —g -E ‘myregex’ file.txt; then
echo “found it!”

f1

-q option “quiet” suppresses the output from the loop

If is gated on successful command execution (returns 0)

=|f incorrect number of arguments passed

if [$# -ne 2]; then
echo “$0 requires 2 arguments” >&2
exit 1

fi

Checks if number of arguments is not equal to 2, if so prints an error message to stderr and exits with error code

Common loop use cases

*|terate over files

. irect
for file in s(ls)<—A\\f“eS+d‘

do
if

fi

done

[-f S$file 1;

echo

\\$file//

then

ories

=lterate over arguments to script
while [S$# -gt 0]
do

echo $*

shift

done

Shift command moves through
list of arguments

Similar to .next in Java Scanner

Exit Command

*Ends a script’s execution immediately
Like “return”

=End scripts with a code to tell the computer whether the script was successful or had an
error

=0 = successful
exit without a number defaults to O
exlit

exit O

s*Non O = error
exit 1

Scripting demo: combine

Glob patterns

=Syntax to replace a pattern with a list of file names that all match that pattern
Enables you to pass multiple file names as arguments without typing them out individually
Pattern matches are based on location within file directory

*Wildcard - * - anything goes here
EX: echo src/*
Src/filel.txt src/file2.txt src/file3.txt
Example uses

echo * - prints every file/folder in current directory

echo *.txt - finds all files with that extension within directory

echo /bin/python* - finds all files within that path because they start with that string
cp src/* dest/ - copies all files from one directory to another

Regex

=Regular expressions (regex) are a set of rules for matching patterns in text
Used across programming languages and math
Different applications might have slightly different rules (yeabh, it's frustrating...)

=Regex patterns can include characters, anchors and modifiers
Characters = the literal characters you are trying to match

Anchors - set the position in the line where a pattern may be found
" anchor to front
$ anchor to end

Modifiers — modify the range of text pattern can match
* matches any number of characters
[set of chars]

“Regex basics, let P be our pattern and S be a string to match
P can be a single character (ex: a) to match S of the same single character
P.P, matches SifS=SS, where P, =S and P, = S,
P.IP, matches S if P1 or P2 matches S

=grep —e finds using regex
By default grep matches against .*p.*

https://courses.cs.washington.edu/courses/cse374/20su/lectures/05/Lec_2-Wed_ink.pdf

Regex special characters

\ - escape following character () - groups patterns for order of operations
. — matches any single character at least once [] - contains literals to be matched, single or range
c.t matches {cat, cut, cota} [a-b] matches all lowercase letters

| - or, enables multiple patterns to match against”™ - anchors to beginning of line
plep 8 g g

alb matches (a} or (b) $ - anchors to end of line

« - matches O or more of the previous pattern
(greedy match)

a* matches {, a, aa, aaa, ..}

» — matches O or 1 of the previous pattern
a? matches {, a}

+ - matches one or more of previous pattern
a+ matches {a, aa, aaa, ..}

{n} - matches exactly n repetitions of the
preceding
a{3} matches {aaa}

Useful patterns

“abc]| matches everything NOT abc

[a-zA-Z]| matches all English letters

(0-9]* matches list of numbers

https://courses.cs.washington.edu/courses/cse374/20sp/lectur
es/lecture6history

https://courses.cs.washington.edu/courses/cse374/20sp/lectures/lecture6history
https://courses.cs.washington.edu/courses/cse374/20sp/lectures/lecture6history

