
CSE 374 Lecture 8
Introduction to C

C v. Java

C

● Lower level (closer to assembly)
● No guaranteed memory safety
● Procedural
● Compiled (not interpreted like bash)
● Conditional controls (if, while)
● Modern syntax (human readable)
● Small standard library

Java

● Higher level (lots of compilation)
● Safe (sand-boxed in jvm, compiled

limits)
● Object Oriented
● Compiled
● Conditional controls (if, while)
● Modern syntax (human readable)
● Large standard library, huge

extended libraries

Why C?

➔ C is a fairly compact language - fewer features than Java, but easier to
implement efficiently

➔ Provides lower level (closer to assembly) language
➔ Understanding C can give insight into how computers (and memory) work
➔ Still used for

◆ Embedded programming
◆ Systems programming
◆ High-performance code
◆ GPU Programming

C reference books

The
standard
reference.
Available
on Kindle
and in the
UW
library.

Essential C - Stanford pdf
http://cslibrary.stanford.ed
u/101/EssentialC.pdf

http://www.cplusplus.com/

- O’Reilly books (C in a
Nutshell, etc.)

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www.cplusplus.com/

Computers & Memory

CPU - the ‘central processing unit’:
computer circuitry that follows computer
instructions with simple logic, arithmetic,
and I/O

Hard disc storage (modernly often solid
state memory instead of traditional drive):
holds long-term memory which can
persist across re-starts

RAM (memory) : where data is stored
during operation - short term memory

Working memory, cont.

 Address space: list of bytes addressed in orderAddress ‘0’
Address ‘4’

Address ‘264-1’ or ‘232-1’

● Programs are said to have access to this 264 byte space
○ ‘64 bit’ system refers to needing 64 bits to index the space
○ But really don’t - many other things are also using this space

● Location in array is the ‘address’ of a byte
● Programs keep track of addresses of each of their pieces of memory
● Accessing unused address causes a ‘segmentation fault’

Working memory, cont.

 Program address spacecode

● Lowest memory stores program instructions, then global variables (static
constants, string literals)

● ‘Heap’ holds dynamically allocated variables (‘new’ or ‘malloc’ variables)
● ‘Stack’ holds current instructions, each function in a frame

○ ‘Stack’ memory implies that a frame is added, and then the last frame added is removed first

● The heap and stack grow dynamically. Meet in the middle ?= ‘out of memory’ error

heap ->globals <- stack

Pointers

“Point to memory location” int x = 4;

int *xPtr = &x;

int xCopy = *xPtr;

int* noPtr = NULL;

Variable called ‘x’ of type
‘int’ given value of ‘4’

Variable called ‘xPtr’ of type
‘pointer to an integer’, given
value of the location of ‘x’

Variable called xCopy given
the value stored at the
location pointed to by xPtr

Variable ‘noPtr’ correctly
set when location is not yet
known

Arrays

Contiguous blocks in memory

Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value

 Danger, Will Robinson!!

arr

arr[3] arr[len-1]

arr[len+2]

Hello World in C

#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Compile: gcc hello.c
◆ creates executable a.out

➔ Or: gcc -Wall -std=c11 -o
hello hello.c
◆ Wall - turns all warnings on
◆ C11 - specifies using C11 standard

libraries
◆ Creates executable hello

➔ Run: ./a.out or ./hello
◆ Exits with ‘0’ (return 0;)

Hello World in C

#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Include the stdio library (printf,
stdout, etc)

➔ Other standard libraries
◆ Stdlib, math, assert, etc

➔ Also include developer files
◆ #include “myFile.h”

Hello World in C

#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Comment block
◆ /* long form comments */
◆ // shorter comments

Hello World in C

#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ C functions look a lot like Java
methods.
◆ Have return type, arguments
◆ Code block set off with ‘{‘ and

‘}’
➔ Program runs through ‘main’

◆ But not part of class!!
➔ Return value - program exit

◆ >> echo “$?”

What is char **argv ??

● Char - datatype
● char* - pointer to a place in memory that stores a char
● char** - pointer to a place in memory that stores pointers to chars
● The variables argv hold argc points to char* ptrs

○ In c array lengths must be sent as separate arguments, as is done
here

● Also access values with argv[0], argv[1], …. argv[argc-1]

Okay, so, argv[i] ?

● Any argv[i] points to a char* (pointer to characters)
● char* - pointer to a place in memory that stores a char or multiple

chars
● If char* points to an array of characters ending in \0 (a zero byte)
● Aka a string!!
● Argv are usually has arguments coded into strings

“Hello, World!\n”

Is a string of length 15 (\n is one character, but contains \0)

In this case, is a ‘string literal’ - evaluates to a global, immutable
array.

“printf”

Prints to stdout, which is defined in stdio.h

Strings

No real strings - just arrays of characters.
["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "!", \0]

Strings terminate with \0 so their length can be determined

char str[] = "hello"; // array syntax
char *str2 = "hello"; // pointer syntax
char *arrStr[] = {"ant", "bee"}; // array containing char*'s
char **arrStrPtr = arrStr; // pointer to an array containing
char*'s
arrStr[0] = "cat";

