
CSE 374 Lecture 7
Regex and Sed

What have we done so far?

● Use a shell
● Run and combine commands

● emacs
● Write shell scripts

● Regular expressions

● Klaatu, VM
● Pwd, ls, chmod

● < | >>
● Apropos, man

● grep

What is ‘sed’?

Stream editor: makes basic text
transformations on an input stream

Use ‘sed command file[s]’

Changes line by line, one pass through
Run ‘man sed’ now!

Basic usage: sed

$ sed [OPTIONS] [COMMAND] [FILE]

$ input_stream | sed [COMMAND]

$ sed -i 's/original/replacement/g' test.txt

Useful options:

-i : replace input file with edited version

-e : allows for multiple commands -
applies each left to right (sed -e
's/a/A/' -e 's/b/B/' <old >new)

-f : reads command from a file

-n : suppresses output except when told
otherwise

Omitting file applies [COMMAND] to
stdin

‘I’ - Replaces input
file with updated
version

COMMAND

‘s’ - substitute

Input file

‘G’ - global

Sed cycle

1. Read one line from input stream
2. Put in pattern space without trailing /n
3. Execute command

a. commands with address are only executed if address is verified
4. Pattern space is printed to the output stream

Other types of commands

‘P’ : print this line (often used with ‘-n’ to
suppress printing of non-marked lines)

‘d’ : delete this pattern space and
continue

‘y’ : transliterate characters

‘a’: append text

‘i’ : insert text

‘c’ : replace text

sed -n 's/pattern/&/p' <file

$ echo hello world | sed
'y/abcdefghij/0123456789/'
74llo worl3$

$ seq 3 | sed '2i hello'
1
hello
2
3

$ seq 10 | sed '2,9c hello'
1
hello
10

Addresses

Addresses apply sed only to specific lines. Address comes before command.

Number : only that line number

$: last line of input

First~step : every ‘step’ lines starting with ‘first’

/regexp/ : only lines matching the regular expression

l1,l2: range - between line that matches l1, and line that matches l2 (l1&l2 can be numbers or
regex)

sed - more ideas

➢ Sed encounters one line at a time, and does one pass of the input.
➢ Delimiter ‘/’ can be changed to anything, like ‘_’ or ‘:’ - may help if COMMAND contains

many ‘/’
➢ Multi-line editing is possible, but painful, with sed (with ‘hold buffer’). Use another

scripting program (like ‘awk’).
➢ Branches are also possibly (‘b’ and ‘t’ commands)
➢ Use backreferences (\1, \2 etc) to refer back to regex gathered with \(to \)

What about
‘awk’

Or perl? Or ed? Or ruby?

Special purpose language for text
editing on an input stream. More
programming concepts, used for
bigger commands.

Many scripting choices, often with
more functionality. Sed stands as the
quickest, easiest, and standard on
*nix systems for simple commands.

Up next
Introduction to C

