
CSE 374 Lecture 3
I/O Redirection and Scripts

HW0

➔ Handed in last night
➔ Goal: ensure that you are able to use the fundamental tools we need for this

course
◆ If you had issues, follow up to correct them ASAP.

➔ Debugging: in this course you need to work more independently. Use all the
resources you have to find answers.
◆ Ex: scp

➔ If you added the course late: You will have two days from when you get your
klaatu account to complete the exercise before it uses a ‘late day’. I’ll grant an
amnesty on the Canvas discussion until Sunday, 11:59 pm

I/O Streams

● All bash commands have three
streams
○ 0- stdIn [keyboard]
○ 1- stdOut [screen]
○ 2-stdErr [screen]

● Can redirect streams
○ < yourInput
○ > yourOutput
○ >> appendYourOutput
○ 2> yourError
○ &> yourOutput&Error
○ And more…

● Special File /dev/null
○ Is EoF if input
○ Data is discarded if output

● Can combine one cmd to the next
○ Cmd1 | cmd2 - pipe output of cmd1

into input of cmd2
○ Cmd1; cmd2 - do one after another
○ Cmd1 `cmd2` - use output of cmd2

as input to cmd1
● Can use cmd logic

○ Cmd1 || cmd2 - do cmd2 if cmd1 fails
○ Cmd1 && cmd2 - do cmd 2 if cmd1

succeeds

Special Characters

! > < & | * ~ [] “ ‘ ` $ /

 \ is escape
character

“string”

‘string’

What do they all
mean?

Would substitute
things like $VAR

Suppresses
substitutions

Shell Behavior

All redirection & string expansion or
substitutions are done by the shell, before the
command.

Command only sees resulting I/O streams.

Bash Language

● Bash acts as a language interpreter
○ Commands are subroutines with

arguments
○ Bash interprets the arguments & calls

subroutine
○ Bash also has its own variables and logic

Towards Scripts

● Shell has a state (working directory, user,
aliases, history, streams)

● Can expand state with variables
● ‘Source’ runs a file and changes state
● Can run a file without changing state by

running script in new shell.

Okay, lets make a script!

1. First line of file is #!/bin/bash (avoids problem of ‘source’ by running)
2. Make file executable (chmod u+x)
3. Run a file ./myNewScript
4. Shell sees the shell program (/bin/bash) and launches it to run the

script
5. Can include

a. String tests (string returns true if non-zero length, string < string, etc.)
b. Logic (&&,||,!) - use double brackets
c. File tests (-d : is directory, -f: is file, -w: file has write permission etc.)
d. Math - use double parens

Script Arguments & Errors

Script refers to ith argument at
$i ; $0 is the program

Use ‘shift’ to move arguments
towards left ($i become $i-n)

Exit your shell with 0
(normal) or 1 (error)

Variables & Alias

Define variable

i=15

Access variable

$i

Undefined variable is empty string

Alias cheer=”echo yahoo\!”

