
CSE 374: Lecture 27
Profiling and memory



Particle Swarm Optimization

● Particle swarm optimization (PSO) is a population based stochastic 
optimization technique developed by Dr. Eberhart and Dr. Kennedy  in 1995, 
inspired by social behavior of bird flocking or fish schooling.

● Used to find the global optimum of potentially non-convex functions.
○ Optimize control settings
○ Fit data to functions
○ Find low energy solutions 

■ Low energy often matches the natural solution
● Function optimization is usually an iterative algorithm

○ Coding inefficiencies add up.

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/


Finding minima



Not to be confused with code or algorithm 
optimization
Minimize memory usage, computation time, or both

● Examination of behavior of a running program
● Tally of memory allocation
● Record of run time, including breakdown of where the time is spent.

Can use a variety of techniques (hardware interrupts, code tooling, performance counters)
Trace: stream of recorded events, proportional to execution time
Profile: statistical summary of event, proportional to code size



Basics

1. Write code
2. Run test cases (benchmarks)
3. Python clint.py
4. Valgrind



Benchmarking v. Profiling

Benchmarking collects statistics on specific sample problems

(Ex. objective functions are standard benchmark functions for optimization)

➔ Number of iterations until convergence
➔ Likelihood of finding solution
➔ Run time
➔ Memory usage

Benchmarking can be very useful for measuring performance on subsequent deliveries



Profiling Tools

● Investigate run-time behavior of code at different points
● Checks time taken by instructions from machine language to high-level 

functions
○ actual time 
○ number of calls to the instruction 

● Flat profiler - computes average call times, does not break down calls
● Call graph profiler - shows chains based on called functions



Insertion v. Sampling profilers

Insertion:

● Place specific profiling code in 
program

● Can be used on various platforms
● Accurate
● Requires recompilation and 

relinking
● Will affect performance

Sampling:

● Monitoring or snap-shotting at 
specific intervals

● No modification of code
● Less accurate - limited by 

sampling rate
● Very small methods often missed
● Not great for memory



$gprof

Gnu profiling tool

Compile with $gcc -pg flag

$./mainopt

Creates gmon.out

Run profiler with 
$gprof ./mainopt

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 64.87      0.22     0.22  2040000     0.00     0.00  update_vel
 14.74      0.27     0.05  2008462     0.00     0.00  rastrigin
 11.79      0.31     0.04  2040000     0.00     0.00  update_pos
  5.90      0.33     0.02      102     0.20     3.34  optimize
  2.95      0.34     0.01    51000     0.00     0.00  update_gb
  0.00      0.34     0.00    20132     0.00     0.00  rosenbrock
  0.00      0.34     0.00    20131     0.00     0.00  spherefunc
  0.00      0.34     0.00      102     0.00     0.00  initialize_opt



$valgrind --tool=callgrind
$valgrind --tool=callgrind ./mainopt

Creates callgrind.out.X
You can read output file

But its tricky; try:
$kcachegrind callgrind.out.X

(Must install cachegrind:
$sudo yum install kcachegrind
Or, on Ubuntu:
$sudo apt-get install kcacehgrind



Observe

● Which methods are being called the most
○ these may not necessarily be the "slowest" methods!

● Which methods are taking the most time relative to the 
others
○ common problems 

■ inefficient unbuffered I/O
■ poor choice of data structure
■ recursion call overhead
■ unnecessary re-computation of expensive 

information, or unnecessary multiple I/O of same 
data



Course Topics
★ Linux, Shells & Emacs, Redirection
★ Shell variables and scripting
★ Regular expressions, grep & sed
★ C (parameters, scope, malloc, structs, lists, trees)
★ Stack & Heap structures, memory management
★ Debugging (gdb), Valgrind, Testing
★ Makefiles
★ Git
★ C++ (object oriented programming, classes, namespaces)
★ Threads and concurrency
★ Profiling and process review


