
CSE 374: Lecture 25
Concurrency

Function Pointers

Can point to code the way we point to data. In C, the syntax is:
<return_type> (*<pointer_name>) (function_arguments);
Set equal to ‘address of function’ (&f)

double two(double x) {
 return 2.0;
}

printf("int two(x) = %e\n",
 integrate(&two, 0.0,

2.0, 1.0));

double integrate(
double (*f)(double),
double lo, double hi,
double delta) {

 ...
 ans += (*f)(x) *

((hi-lo) / ((n+1));
 ...

Function Pointers: nicer syntax

Typedef can be used to shorten datatype:

typedef double (*fdd)(double);

The C compiler is smart enough to know what is a function and what is a variable:

ans += (*f)(x) * ((hi-lo) / (n+1));
ans += f(x) * ((hi-lo) / (n+1));

Also interprets function name as a pointer to the code:

integrate(&sin, 0.0, PI/2.0, 0.01));
integrate(sin, 0.0, PI/2.0, 0.000001));

What is Concurrency?

● Running multiple processes
simultaneously
○ Running separate programs

simultaneously
○ Running two different ‘threads’ in one

program
● Each ‘process’ is one ‘thread’
● Parallelism refers to running things

simultaneously on separate resources
(ex. Separate CPUS)

● Concurrency refers to running multiple
threads on SHARED resources

Sequential programming demands finishing
sequence before starting the next one

Previously, performance improvements
could be made by improving hardware

- no longer (Goodbye Moore’s Law)

Allows processes to run ‘in the background’

★ Responsiveness - allow GUI to respond
while computation happens

★ CPU utilization - allow CPU to compute
while waiting (for data, input, etc)

★ Isolation - keep threads separate so
errors in one don’t affect the others

‘Nice’ linux parallel processes

NAME
 nice - run a program with modified scheduling priority

SYNOPSIS
 nice [OPTION] [COMMAND [ARG]...]

DESCRIPTION
 Run COMMAND with an adjusted niceness, which affects process schedul‐
 ing. With no COMMAND, print the current niceness. Niceness values
 range from -20 (most favorable to the process) to 19 (least favorable
 to the process).

Other Linux tools

Top - shows all processes
with ‘niceness’ (NI)

[mh75@klaatu ~]$ ps -o
pid,comm,nice

PID COMMAND NI
11483 bash 0
13034 ps 0

Concurrency in Detail

● C, Java support parallelism similarly (other languages can be different)
○ one pile of code, globals, heap
○ multiple “stack + program counter”s — called threads
○ threads are run or pre-empted by a scheduler
○ threads all share the same memory

● Various synchronization mechanisms control when threads run
○ “don’t run until I’m done with this”

Address ‘0’
Address ‘4’

Address ‘264-1’ or ‘232-1’

code heap ->globals <- stack

Concurrency in C & Java

C: the POSIX Threads (pthreads) library

● #include <pthread.h>
● pass -lpthread to gcc (when linking)
● pthread_create takes a function pointer and arguments, runs as a separate thread

Java: built into the language

● Subclass java.lang.Thread, and override the run method
● Create a Thread object and call its start method
● Any object can “be synchronized on” (later today)

(Aside: POSIX)

 “ The Portable Operating System Interface (POSIX)[1] is a family of
standards specified by the IEEE Computer Society for maintaining
compatibility between operating systems. POSIX defines the
application programming interface (API), along with command line
shells and utility interfaces, for software compatibility with variants of
Unix and other operating systems.[2][3]” - Wikipedia

The C ‘pthread’ conforms to the POSIX standard for threading.

Pthread functions
Pthread_t threadID;

The threadID keeps track of to which thread we are referring.

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine)(void*), void *arg);

Note - pthread_create takes two generic (untyped) pointers
interprets the first as a function pointer and the second as an argument pointer.

int pthread_join(pthread_t thread, void **value_ptr);

Puts calling thread ‘on hold’ until ‘thread’ completes - useful for waiting to thread to exit

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Memory Consideration

(ex. pthreadex.c)

● If one thread did nothing of interest to any other thread, why bother
running?

● Threads must communicate and coordinate
○ Use results from other threads, and coordinate access to shared resources

● Simplest ways to not mess each other up:
○ Don’t access same memory (complete isolation)
○ Don’t write to shared memory (write isolation)

● Next simplest:
○ One thread doesn’t run until/unless another is done

Parallel Processing

Common pattern for expensive computations (such as data processing)

1. split the work up, give each piece to a thread (fork)
2. wait until all are done, then combine answers (join)

To avoid bottlenecks, each thread should have about the same amount of work

Performance will always be less than perfect speedup

What about when all threads need access to the same mutable memory?

Multiple threads with one memory

Often you have a bunch of threads running at once and they might need
the same mutable (writable) memory at the same time but probably not

Want to be correct, but not sacrifice parallelism

Example: bunch of threads processing bank transactions
withdraw, deposit, transfer, currentBalance, etc…

unlikely two will overlap, but there’s a chance

very important that answer is correct when they overlap

Data races

struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {

if (a->balance < amt) return FAIL;
a->balance -= amt; return SUCCESS;

}

This code is correct in a sequential program

It may have a race condition in a concurrent program, allowing for a negative balance

Discovering this bug with testing is very hard

A Data Race - two threads withdraw $100 simultaneously

Thread 1
struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {

if (a->balance < amt) {
return FAIL; }

a->balance -= amt; return SUCCESS;
}

Thread 2

struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {

if (a->balance < amt) {
return FAIL; }

a->balance -= amt; return SUCCESS;
}

Atomic Operations

● An operation we want to be
done all at once
○ No interruptions

● Note: Must be the right size
○ Too big - program runs

sequentially
○ Too small - program has

potential races
● ‘Atomic’ requires a hardware

primitive

We can wrap the hardware primitive with a lock

In C : ‘mutex’

std::mutex BankAccount::m_;
void BankAccount::withdraw(double amount) {

m_.lock();
 if (getBalance() > b) {
 throw std::invalid_argument();
 }
 setBalance(getBalance() - amount);
 m_.unlock();
}

C mutex lock

1. Create a lock for specific data
2. Lock before atomic part of code
3. Unlock after atomic operation

What happens if more than one piece
of code affects the data?

Idea: Use same mutex (‘m’) for each
piece of code that modifies
‘balance_’

std::mutex BankAccount::m_;
void BankAccount::withdraw(double amount)
{

m_.lock();
 if (getBalance() > b) {
 throw std::invalid_argument();
 }
 setBalance(getBalance() - amount);
 m_.unlock();
}

Deadlock

Problem:

If every method that modifies
balance_ is locked with
mutex m, that balance can
not be updated.

Solution:

Must create helper function
that allows for modifying
balance_ under the lock.

void BankAccount::withdraw(double amount) {
 m_.lock();
 if (getBalance() < amount) {
 throw std::invalid_argument();
 }
 setBalanceUnderLock(getBalance() - amount);
 m_.unlock();
}

void setBalance(double amount) {
 m_.lock();
 setBalanceUnderLock(amount);
 m_.unlock();
}

void setBalanceUnderLock(double amount) {
 balance_ = amount;
}

HW 7

C++ Classes and Program structure

You are given the outline of a program, including
header files and a Makefile

You should create ONLY Rational.cpp - the other
files can remain unchanged. That means if you find
errors in them they can remain unchanged.

● You will only turn in Rational.cpp, so it must
work with the supplied files.

● ‘$make’ should work with the supplied
Makefile to create the executable rcalc.

Classes and Namespaces

You will be implementing a namespace; make sure
you use it.

You will be implementing member functions of a
class.

Reminder: Rational numbers

A rational number is a number that can be
in the form p/q where p and q are integers

and q is not equal to zero.

