CSE 374: Lecture 24

Week 9: hexadecimal and number storage
Number systems and BASE

<table>
<thead>
<tr>
<th>Generally use base 10</th>
<th>Digital systems - base 2</th>
<th>Base 16 - very compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 fingers)</td>
<td>(binary)</td>
<td>(hexadecimal)</td>
</tr>
<tr>
<td>234</td>
<td>$234 = 0b11101010$</td>
<td>$234 = 0xEA$</td>
</tr>
<tr>
<td>$2 \times 100 + 3 \times 10 + 4 \times 1$</td>
<td>$1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$</td>
<td>$14 \times 16^1 + 10 \times 16^0$</td>
</tr>
<tr>
<td>$2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$</td>
<td></td>
<td>Need 16 digits, so we used [0-9A-F]</td>
</tr>
</tbody>
</table>

Notice: 234 takes 3 digits to express in base 10, 8 in base 2, and 2 in base 16.
The hardware (and C) supports two flavors of integers
◆ unsigned – only the non-negatives
◆ signed – both negatives and non-negatives

There are only 2^W distinct bit patterns of W bits, so...
◆ Cannot represent all the integers
◆ Unsigned values: $0 \ldots 2^W - 1$
 \[\leq 2^{4-1} \to 1111 \to 2^3 + 2^2 + 2^1 + 2^0 \to 8 + 4 + 2 + 1 \to 15 \]
◆ Signed values: $-2^W - 1 \ldots 2^{W-1} - 1$

Reminder: terminology for binary representations

“Most-significant” / “high-order” bit(s) “Least-significant” / “low-order” bit(s)

00100101110101011
Signed Ints (obvious solution)

4 bit signed int
Most significant bit is reserved for the sign
Changes the range to \([-2^w-1, 2^w-1]\)

Adding unsigned ints: (add and carry normally)
0101
+0011

1000

Adding signed ints: (gets tricky - notice
4−3 ! = 4+−3)

0100
+1011

1111 = 15
Twos-complement

Imagine the first bit is ‘subtract’ the value of the digit

Old version - notice the two different representations of ‘0’
Twos-complement: Benefits

Only 1 representation of 0

Most-significant bit is still the sign

Negate a value
 Bitwise complement + 1

0101 = 1010 + 1 = 1011

Adding becomes easy again:

(4 - 3 = 4 + -3 = 1)
0100 + 1101 = 0001
Get the two-complement number by subtracting 2^w from the unsigned number of the same representation:

$$11(1011) - 16 = -5(1011)$$

Use the same algorithm for addition, so hardware implementation is simpler.
What happens if you ‘overflow’

Overflow: have numbers too big or small for your number of digits.

(Remember, using 4 bits, unsigned = [0,15] and signed [-8,7]

6+4 = ? (signed) 15+2 = ? (unsigned)

-6 - 6 = ? (signed) 2 - 6 = ? (unsigned)

Notes: You may get a warning for overflow with two-complement numbers, but probably not with unsigned numbers.
C: ‘int’ and ‘unsigned’

```c
int tx, ty;
unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```c
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```c
tx = ux;
uy = ty;
```

The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!

Casting - doesn’t change underlying bits, they just get interpreted differently!

Note: in C, constants are assumed to be signed, unless the ‘U’ suffix is used: 15U -> 15 unsigned
Float Point Numbers

- Fractional binary numbers work in the same fashion as fractional decimal numbers
 - $1.25 = 1 \cdot 10^0 + 2 \cdot 10^{-1} + 5 \cdot 10^{-2}$
 - $0b1.01 = 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 1 + 1/4 = 1.25$
- Can have repeating just like decimal
 - $1/10 = 0b0.0001100110011[0011 \ldots$
- Floating point values only represent numbers that can be written $x \cdot 2^y$
- Like scientific notation
 - Not $0b0.000101$ but $1.01 \cdot 2^4$
- Floating point standard established
 - 1985, IEEE 754 - before that every system had a different approach
Floating Point Numbers

- Numerical form: \(V_{10} = (-1)^s \times M \times 2^E \)
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0,2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

| \(s \) | \(E: \) encodes exponent | \(M: \) encodes fraction |
Floating Point Numbers

- Numerical form: $V_{10} = (-1)^s \times M \times 2^E$

<table>
<thead>
<tr>
<th>s</th>
<th>E: encodes exponent</th>
<th>M: encodes fraction</th>
</tr>
</thead>
</table>

- For single precision (32 bits), we have $s = 1$ bit, $E = 8$ bits, $M = 23$ bits
- For double precision (64 bits), we have $s = 1$ bit, $E = 11$ bits, $M = 52$ bits
- Since we have a finite number of bits, some values will have to be approximated
- Special values
 - zero: $s == 0, E == 0, M == 0$
 - $+\infty, -\infty$: $E ==$ all ones, $M == 0$
 - NaN (not a number): $E ==$ all ones, $M != 0$
 - special values can pollute numerical computation
Floating Point Numbers

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
- Some “simple fractions” have no exact representation (e.g., 0.2)
- Can also lose precision, unlike ints “Every operation gets a slightly wrong result”
- Mathematically equivalent ways of writing an expression may compute different results
- Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!
Floating Points in C

- C offers two levels of precision
 - float single precision (32-bit)
 - double double precision (64-bit)
- `#include <math.h>` to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky
 - often return unexpected results
 - Just avoid them!
Data type conversions

- Conversions between data types:
 - Casting between int, float, and double changes the bit representation.
- int → float
 - May be rounded: overflow not possible
- int → double or float → double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- long int → double
 - Rounded or exact, depending on word size
- double or float → int
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 -> 1, -1.99 -> -1
- “Not defined” when out of range or NaN: generally sets to Tmin
What about Hexadecimal?

<table>
<thead>
<tr>
<th>Generally use base 10</th>
<th>Digital systems - base 2</th>
<th>Base 16 - very compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 fingers)</td>
<td>(binary)</td>
<td>(hexadecimal)</td>
</tr>
<tr>
<td>234</td>
<td>234 = 0b11101010</td>
<td>234 = 0xEA</td>
</tr>
<tr>
<td>2x100 + 3x10 + 4x1</td>
<td>1x2^7 + 1x2^6 + 1x2^5 + 0x2^4 + 1x2^3 +0x2^2+ 1x2^1 + 0x2^0</td>
<td>14x16(^1) + 10x16(^0)</td>
</tr>
<tr>
<td>2x10^2 + 3x10^1 + 4x10^0</td>
<td></td>
<td>Need 16 digits, so we used [0-9A-F]</td>
</tr>
</tbody>
</table>

Computer represent things in binary. However, we can capitalize on different representations for compact storage, or for particular needs. One hexadecimal digit takes precisely 4 bits (one nibble) to store. Because 16 corresponds to 2 bytes conversion from binary to hexadecimal is convenient.
Hexadecimal in C

There is no unique type for hexadecimal in C. We use ‘unsigned int’ or ‘unsigned char’.

Remember, sizeof(int) = 2 or 4 [bytes]
and sizeof(char) = 1 [byte]

An unsigned char can hold values up to 255 or 0xFF (maximum two digit hex value)

unsigned char ahexvalue = 0xFE;
uintptr_t mymem = (uintptr_t) malloc (16);
for (int i = 0; i < 16; i++) {
 ((unsigned char)(mymem+i)) = 0xFE;
}