
CSE 374: Lecture 23
Inheritance



Subclasses
● Polymorphism. In essence, polymorphism is the ability access different objects through the same 

interface. For instance, if you have an interface that represents an electronic device, that interface 
would have the ability to turn the device on and off. You can use the actual physical types - 
computer, phone, television, etc - as if they were an electronic device, because they all have the 
on/off capability.

● Inheritance. This is one of the meatiest pieces of OO programming. Inheritance allows the sharing 
of BEHAVIORS. For instance, a Square is a type of Rectangle, and has the same way to compute 
its area (width times height) - therefore by make Square inherit from Rectangle, we can share that 
behavior and avoid duplicating the code.

Subclassing supports fundamental Object Oriented precepts.  
It may not always be what we want, but understanding OO 

requires understanding subclassing.



Bank Account ex.
● Static fields. A bank account has an associated ID number, which is automatically generated when the account is 

created. So, we added a static field accountCount_ to the BankAccount class. The "static" keyword means that there is 
only ONE variable for all objects of this class, not one per object like normal fields. We can use the accountCount_ to 
generate a unique ID number in the constructor by using that count as the ID and then incrementing the count by 1. 

● Deleted constructors. Remember C++ automatically generates a "copy constructor" for your class if you do not provide 
one. However, making copies of the account would be a really bad thing! So we can declare a copy constructor in the 
header file and set that constructor "= delete;", which means we "delete" it and prevent it from being used anywhere in the 
code.

● Pure virtual functions. A "bank account" is a general concept; if you go into the bank and ask to open a bank account, 
they'll ask "what kind?" Each type of accounts has a slightly different implementation of withdrawal. All accounts do have 
the ability to withdraw, but since each type of account has a different implementation, we'll declare the withdraw() function 
but NOT provide an implementation. We do this as follows by declaring the function "virtual" and setting it equal to 0:

virtual void withdraw(int amount) = 0;

● This is called a "pure virtual" function, and it make this BankAccount class equivalent to Java's abstract class! Any 
subclass of BankAccount will have to implement the withdraw() function.



Public Subclassing

Basic: 
class D : public C { ... }

This is public inheritance; C++ has other kinds too (won’t cover)

Differences affect visibility and issues when you have multiple 
superclasses (won’t cover)

So do not forget the public keyword 



Savings Account

● We provide a constructor that gives more information than just the 
BankAccount's constructor - a SavingsAccount also generates interest, 
so we have an interest rate associated with the account.

● The derived class can add additional functions, like getInterestRate().
● The derived class adds an implementation of the withdraw() function 

from the base class BankAccount. We mark this function "override" so 
the compiler verifies that we've done the overriding correctly.



Base-class and Derived-class

● Not all classes have superclasses (unlike Java with Object)
○ (and classes can have multiple superclasses
○ more general and complexity-prone than Java) • 

● Terminology
○ Java (and others): “superclass” and “subclass”
○ C++ (and others): “base class” and “derived class”

● Our example code: 
○ House derives from Land which derives from Property 
○ (read the code, no time for detailed presentation)

● As in Java, can add fields/methods/constructors, and override methods 



Constructing and Destructing

● Constructor of base class gets called before constructor of derived class
○ Default (zero-arg) constructor unless you specify a different one after the : in the 

constructor
○ Initializer syntax: Foo::Foo(…): Bar(args); it(x) { … }
○ Needed to execute superclass constructor with arguments; also works on instance 

variables and is preferred in production code (slogan: “initialization preferred over 
assignment”)

● Destructor of base class gets called after destructor of derived class
● So constructors/destructors really extend rather than override

○ Typically what you want
○ Java is the same



Method Override

If a derived class defines a method with the same method name and 
argument types as one defined in the base class, it overrides (i.e., replaces) 
the base class method.

Remember constructors EXTEND, new methods OVERRIDE

If you want to use the base-class code, you specify the base class when 
making a method call (class::method(…))

Like super in Java (no such keyword in C++ since there may be multiple 
inheritance) 



Virtual methods              (mystery code)

Code for class functions is stored in a function table
Look up the functions for a class based on object type

If we want an object to look in the function table for the 
constructed class, not the variable type(often a base type), we 
make the function ‘virtual’.

Destructors should always be virtual, so if a derived class is 
constructed, it is destructed appropriately. 



Virtual methods - details

● A non-virtual method-call is resolved using the (compile-time) type 
of the receiver expression

● A virtual method-call is resolved using the (run-time) class of the 
receiver object (what the expression evaluates to)
○ Called “dynamic dispatch”

● A method-call is virtual if the method called is marked virtual or 
overrides a virtual method
○ So “one virtual” somewhere up the base-class chain is enough, but it’s 

probably better style to repeat it 



(Up) casting

● An object of a derived class cannot be cast to an object of a base class.
○ For the same reason a struct T1 {int x,y,z;} cannot be cast to type 

struct T2 {int x,y;} (different size)

● A pointer to an object of a derived class can be cast to a pointer to an 
object of a base class.
○ For the same reason a struct T1* can be cast to type struct T2* (pointers 

to a location in memory)
○ (Story not so simple with multiple inheritance)

● After such an upcast, field-access works fine (prefix)
○ but what do method calls mean in the presence of overriding? 



(Down) casting

● C pointer-casts: unchecked; be careful
● Java: checked; may raise ClassCastException 
● New:  C++ has “all the above” (several different kinds of casts)

○ If you use single-inheritance and know what you are doing, the C-style 
casts (same pointer, assume more about what is pointed to) should 
work fine for downcasts

○ Worth learning about the differences on your own 



Pure virtual methods and interfaces (?)

● A C++ “pure virtual” method is like a Java “abstract” method.
○ Some subclass must override because there is no definition in base class

● Makes sense with dynamic dispatch
● Funny syntax in base class; override as usual: 

class C { 
virtual t0 m(t1,t2,...,tn) = 0; 
... 

};

● Side-comment: with multiple inheritance and pure-virtual methods, no need for a 
separate notion of Java-style interfaces 


