
CSE 374: Lecture 22

C++ Classes

Object Oriented Programming
We've now seen OO-programming (Java) and procedural programming (C). As a refresher, what distinguishes
object-oriented design, and why might you use it?

● Polymorphism. In essence, polymorphism is the ability access different objects through the same interface.
For instance, if you have an interface that represents an electronic device, that interface would have the
ability to turn the device on and off. You can use the actual physical types - computer, phone, television, etc
- as if they were an electronic device, because they all have the on/off capability.

● Inheritance. This is one of the meatiest pieces of OO programming. Inheritance allows the sharing of
BEHAVIORS. For instance, a Square is a type of Rectangle, and has the same way to compute its area
(width times height) - therefore by make Square inherit from Rectangle, we can share that behavior and
avoid duplicating the code.

● Encapsulation. We group data and behavior together to form logical units. For instance, we can have a
linked list class that represents the data stored in the list but also all the operations that you can perform on
the list, disallowing any operations that we don't want to support.

C Structs: Not object-oriented
typedef struct person {
 char* name;
 int age;
} person;

person* makePerson (char *name, int a) {
 person* p = (person*) malloc (sizeof (person));
 p->name = (char*) malloc (MAX_NAME+1);
 strncpy (p->name, name, MAX_NAME);
 p->age = a;
 return p;
}

person *p2;
char name[MAX_NAME];
int age;
// fill name, age
p1 = makePerson (name, age);

Notes:
 need to allocate heap memory so object will persist
 need to allocate memory for the string
 Unless you statically declare (char name[MAX_NAME])

C++ classes: object-oriented
class String {

public:
 String();
 String(const String& other);
 String(const char* raw);
 virtual ~String();
 String& operator=(const String& other);
 size_t length() const;
 void append(const String& other);
 void clear();

friend std::ostream&
operator<<(std::ostream& out, const String& s);

 private:
 void makeNewRaw(size_t length);
 char* raw_;
};

Classes - can define fields and methods

Class layout

Classes

● Like Java
○ Fields vs. methods, static vs. instance, constructors
○ Method overloading (functions, operators, and constructors too)

● Not quite like Java
○ access-modifier (e.g., private) syntax and default
○ declaration separate from implementation (like C)
○ funny constructor syntax, default parameters (e.g., ... = 0)

● Nothing like Java
○ Objects vs. pointers to objects
○ Destructors and copy-constructors
○ virtual vs. non-virtual (to be discussed)

Class Constructors (4 types)

● A default constructor takes zero arguments. If you don't define any constructors for
your class, the compiler will generate one of these constructors for you.

● A copy constructor takes a single parameter which is a const reference (const T&)
to another object of the same type, and initializes the fields of the new object with
a COPY of the fields in the referenced object.

● User-defined constructors initialize fields and take whatever arguments you like.
● Conversion constructors are constructors that take a single argument. For our

string example this is like:
String(const char* raw);
String s = "foo";

Copy Constructors

● In C, we know x=y or f(y) copies y (if a struct, then member-wise copy)
● Same in C++, unless a copy-constructor is defined, then do whatever

the copy-constructor says
● A copy-constructor by definition takes a reference parameter (else

we’d need to copy, but that’s what we’re defining) of the same type
● Copy constructor vs. assignment

○ Copy constructor initializes a new bag of bits (new variable or
parameter)

○ Assignment (=) replaces an existing value with a new one
■ may need to clean up old state (free heap data?)

Implicit constructors & destructors

Conversion constructors are implicit:
automatically applied when a
constructor is called with one
argument.

If you want a single argument
constructor that is not implicit, must
use
explicit String(const
char* raw);

Destructors are used by ‘free’
to clean up when freeing
memory.

Virtual ~String();

You do not call destructors
explicitly

Stack v. Heap
Java: cannot stack-allocate an object (only a pointer to one; all objects are
dynamically allocated on the heap - all objects are pointers to objects

C: can stack-allocate a struct, then initialize it (And actual object)
C++: stack-allocate and call a constructor (where this is the object’s address, as
always, except this is a pointer) Thing t(10000);

Java: new Thing(...) calls constructor, returns heap allocated pointer
C: Use malloc and then initialized, must free exactly once later, untyped pointers
C++: Like Java, new Thing(…), but can also do new int(42). Like C must deallocate,
but must use delete instead of free. (never mix malloc/free with new/ delete!)

Operator Overload

I/O operators (<< and >>) - take an l-value and an r-value Can overload:

// This allows us to print the String directly to an ostream!
// This is NOT a member function of String! It is a global function that we
// are OVERRIDING with behavior for String. We use the keyword "friend"
// on the front, which will allow the operator to access the otherwise-private
// internal state of String (ie the raw char*).
friend std::ostream& operator<<(std::ostream& out, const String& s);

std::ostream& operator<<(std::ostream& out, const String& s) {
return out << s.raw_; }

Subclasses

● Polymorphism. In essence, polymorphism is the ability access different objects through the same interface.
For instance, if you have an interface that represents an electronic device, that interface would have the
ability to turn the device on and off. You can use the actual physical types - computer, phone, television, etc
- as if they were an electronic device, because they all have the on/off capability.

● Inheritance. This is one of the meatiest pieces of OO programming. Inheritance allows the sharing of
BEHAVIORS. For instance, a Square is a type of Rectangle, and has the same way to compute its area
(width times height) - therefore by make Square inherit from Rectangle, we can share that behavior and
avoid duplicating the code.

