
CSE 374: Lecture 21
Week 8: Introduction to C++

File Systems
❏ File systems are trees
❏ (or directed acyclic graphs)
❏ A file (or directory) is specified by

its path from the top (‘/’)
❏ Can be specified absolutely

(entire path),
❏ Relatively (from current location)

❏ This directory ‘./’
❏ One directory up ‘../’

❏ You have access to your ‘home’
directory (‘~’)

What is C++ ?

A big language - much bigger than C

Conveniences in addition to C (new/delete, function overloading,
bigger std library)

Namespaces - similar to Java

Extras (casts, exceptions, templates, lambda functions)

Object Oriented - has classes and objects similar to Java

Why C++ ?

● C++ is C-like in
○ User-managed memory
○ Header files
○ Still use pointers

● C++ is Java like in
○ Object Oriented
○ Modern additions to language

● Knowing C++ may help understand both C & Java better

C++ Hello, World!
#include <cstdlib>
#include <iostream>

const int CURRENT_YEAR = 2019;

using namespace std;

// REFERENCE
void pig(string& s) {
 char first = s[0];
 s = s.substr(1);
 s += first;
 s += "ay";
}

int main() {
 // stack-allocated array: int arr[100];
 // C++ style heap allocation:
 int* arr = new int[100];

 // C++ style array deletion:
 delete [] arr;
 // Use "delete x;" for things non-arrays.

 cout << "What is your name? ";
 string name;
 cin >> name;
 pig(name);
 cout << "What year were you born? ";
 int year;
 cin >> year;
 const int age = CURRENT_YEAR - year;
 cout << "Hello, " << name << "!" << endl;
 cout <<"You’re "<<age<< " years old"<< endl;
 return EXIT_SUCCESS;
}

So, what different with C++?

● File Names (instead of *.c)
○ *.cc or *.cpp or *.cxx

● Compiler (instead of gcc)
○ $g++

● Preprocessor (still uses C
preprocessor)
○ But #include <cstdlib>

● Still use *.h for header
files

● Basically does the same
thing as <stdlib.h>

Namespaces

● Group code logically
● Can re-use names for each

namespace
● Can next namespaces
● Disambiguate with :: syntax
● Can avoid using the prefix with

using namespace foo
doSomething(3)

● If you are using a namespace in a
header, you must also use the
namespace in the source code (.cpp)

namespace foo {
 int doSomething(int x);
}

namespace bar {
 int doSomething(int x);
}

int main() {
 foo::doSomething(3);
 bar::doSomething(3);
}

I/O in CPP

Std library include a cout and a cin
function

Operators ‘>>’ and ‘<<’ act like shell
redirection

Operators ‘>>’ and ‘<<’ take left and right
operands and return a stream

Use namespace std or

use std::cout & std::cin

using namespace std

cout << "What is your name? ";
string name;
cin >> name;

cout << "When were you born? ";
int year;
cin >> year;

Pass by reference

● In C: all function arguments are copies
○ Pointer arguments pass a copy of the address value

● In C++: Can do the above
○ but can also use a “reference parameter” (& character before var name)
○ As though the calling line wrote pig(&name) and in ‘pig’ every ‘s’ is a ‘*s’

void pig(string& s) {
 char first = s[0];
 s = s.substr(1);
 s += first;
 s += "ay";
}

 string name;
 cin >> name;
 pig(name);

Const

In C++ we also have the new "const" keyword, which says "this thing must not
change". We can use this to declare global constants:

 const int CURRENT_YEAR = 2018;

Global constants look a lot like global variables, but they are OK stylistically
whereas regular global variables are not because the "const" keyword says that this
value CANNOT CHANGE.

 // This won't compile.
 CURRENT_YEAR = 2038;

New / delete

In C:
 int* arr = (int*) malloc(sizeof(int) * 100);
 free(arr);

In C++, we have a nicer syntax for this that does the same thing:
 int* arr = new int[100];
 delete [] arr;

We can also do this for non-array types:
 int* x = new int(4); // x stores the value 4.
 delete x;

Arrays

● Create a heap-allocated array of objects: new A[10];
○ Calls default (zero-argument) constructor for each element
○ Convenient if there’s a good default initialization

● Create heap-allocated array of pointers to objects: new A*[10];
○ More like Java (but not initialized?)

● As in C, new A() and new A[10] have type A*
● new A* and new A*[10] both have type A**
● Unlike C, to delete a non-array, you must write delete e
● Unlike C, to delete an array, you must write delete [] e

Resources

Best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th ed., Addison-Wesley,
2013

Every serious C++ programmer should also read: Effective C++, Meyers, 3rd ed.,
Addison-Wesley, 2005

Best practices for standard C++

Effective Modern C++, Meyers, O’Reilly, 2014
Additional “best practices” for C++11/C++14

Good online source: cplusplus.com

