
CSE 374: Lecture 16
Makefiles

Programming
Tools

Today: Make & makefiles

https://www.gnu.org/software/make/manual/So far: Gcc, Gdb, Valgrind

To come: version control
http://cslibrary.stanford.edu/107/UnixProgrammingTools.

pdf

https://www.gnu.org/software/make/manual/
http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf
http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

Why?

Programmers are lazy

Compilation commands get long
($gcc -Wall -std=c11 -g -D DEBUG -o demo demo1.c demo2.c)

Build processes get longer with multiple
files

Automating process reduces both typing
and errors

Large projects can take hours to compile:
Makefiles provide options

What we Make

Compiler actually runs in stages:

a. Preprocessor
b. Compiler
c. Assembler
d. Linker

There are other tools to manage this:

● IDEs
● Projects
● Ant

Dependency Tree - helps decide what to do

Each target T is dependent on one or more sources S
If any S is newer than T, remake T.

Recursive: If a source is also a target for other sources, must also evaluate its
dependencies and possibly remake

lldemo

linkedlist.h

linkedlist.o linkedlistclient.o

linkedlist.c linkedlistclient.c

Directed-acyclic-graph
(cycles make no sense)

An algorithm to Make targets

➔ Calculate build from dependencies
➔ Have a list of tuples

◆ Each tuple made of Target, Sources, Command to build Target
◆ Recursively determine which targets must be rebuilt

● Usually if one or more sources is newer than the target
➔ Execute all necessary commands
➔ Including re-linking the object files

Make Basics
● Target - output file
● Prerequisites - sources needed

for that output
● Recipe - the command needed

to generate target.
● More than one command is

possible, possibly on multiple
lines.

● You don’t always need sources

$make uses a Makefile to determine
what to do

Makefiles consist of rules in the form:

Target … : prerequisites …

recipe/command

...

Unless specifically set
otherwise, recipes MUST be
indented with TAB not spaces.

Must have colon:

Multi-line commands may \
Have lines split with \
backslashes

Make isn’t language
specific: recipe may be any
valid shell command

Special Rules
‘Phony’ targets

Targets are not actually files, but often used
commands

A phony target may have no dependencies:

clean:
rm -f *.o talk *~

(Phony targets will never be called if files by
those names exist, so must be forced. Refer
to manual.)

‘All’ is a special phone target that just
specifies what to make in a complete build.

Often the first ‘default’ target

phony all specifies every \
 target to make.
all: talk
talk: main.o speak.o shout.o

gcc -Wall -std=c11 -g -o talk
main.o speak.o shout.o

Using ‘make’
$make [-f makefile] [options] ... [targets] …

If no -f use a file named Makefile

If no target specified use the first one in the file

$ make talk
gcc -Wall -std=c11 -g -c main.c
gcc -Wall -std=c11 -g -c speak.c
gcc -Wall -std=c11 -g -c shout.c
gcc -Wall -std=c11 -g -o talk main.o
speak.o shout.o
$ make clean
rm -f *.o talk *~

Use other author’s Makefiles:

You can download a tarball, extract it,
type make (four characters) and
everything should work

Actually, there’s typically a “configure”
step too, for finding things like “where
is the compiler” that generates the
Makefile (but we won’t get into that)

The mantra: ./configure; make; make
install

Talk Demo

talk

main.ospeak.oshout.o

main.c

speak.h

speak.cshout.c

shout.h

Variables

● You can define variables in
Makefiles
○ Set defaults at top of file
○ Reduce repetitive typing
○ Change variables at command

line
○ Reuse Makefiles on new

projects
○ Use conditionals to choose

variable settings

CC = gcc
CFLAGS = -Wall
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c foo.c -o foo.o

make CFLAGS=-g

EXE=
ifdef WINDIR # defined on Windows
 EXE=.exe
endif
widget$(EXE): foo.o bar.o

$(CC) $(CFLAGS) -o widget$(EXE)\
 foo.o bar.o

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)

gcc -o widget $(OBJFILES)

clean:
rm $(OBJFILES) widget

Extra Characters

➢ In commands (short list):
○ $@ for target
○ $^ for all sources
○ $< for left-most source

➢ Examples:
○ widget$(EXE): foo.o bar.o

$(CC) $(CFLAGS) -o
$@ $^

○ foo.o: foo.c foo.h bar.h
$(CC) $(CFLAGS) -c $<

Also use wild cards (ex. *.0), but
you need to be careful.

Use the ‘wildcard’ function for
precision.

Fancy Stuff (use with care!)
Implicit rules:
Make automatically applies rules to common types of files
n.o is made automatically from n.c with a recipe of
the form ‘$(CC) $(CPPFLAGS) $(CFLAGS) -c’.

Pattern rules:
Define new implicit rules by using ‘%’ as a type of wildcard

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

%.class: %.java
javac $< # Note we need $< here

Commands can be any
valid shell command,
including shell scripts

Repeating targets can
add dependencies
(useful for automatic
target generation)

Suffix rules:
Old form of pattern
rules using only suffixes

Dependency Generation

Make has no knowledge of dependency trees
If you make a mistake in your source list make can’t fix it.
Consider auto-generation:

In C:
$gcc -MM target.c

Can ‘make depend’:
depend: $(PROGRAM_C_FILES)

gcc -M $^

Summary

★ $make uses Makefiles to encode build processes
○ Automate process

■ For shipment?
■ Convenience
■ Reliability

○ Reduce unnecessary rebuilds
○ Provide build options

★ $make relies on tuples of [Target(s), Source(s), Command(s)]
★ $make relies on timestamps and shell commands

○ Language independent

★ Many convenient additional variations
○ Use with care - can obfuscate meaning

Problem of multiple ‘main’ functions
//sample.c

#define WIN32

#ifdef WIN32
int main() {

//in this case only this main()
 will be compiled.

}
#endif

#ifdef LINUX
int main() {
 //another main for linux platform
}
#endif

You would not use two ‘main’ functions,
because main is always the single entry point.

(Note: It works in Java becasue we can define
one ‘main’ for each class namespace. We don’t
have the same concept of namespaces in C.)

Your code could define two mains, and choose
one at pre-process time.

You could also include code that was chosen
with a compiler flag (such as #ifdef DEBUG).

