CSE 374: Lecture 16

Makefiles

Programming
Tools

Today: Make & makefiles

So far: Gee, Gdb, Valgrind https://www.gnu.org/software/make/manual/

To come: version control
http://cslibrary.stanford.edu/107/UnixProgrammingTools.

https://www.gnu.org/software/make/manual/
http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf
http://cslibrary.stanford.edu/107/UnixProgrammingTools.pdf

Compilation commands get long

(Sgcc -Wall -std=cll -g -D DEBUG -o demo demol.c demo2.c)

Build processes get longer with multiple

Why? files

Automating process reduces both typing

Programmers are lazy [EEEKEE

Large projects can take hours to compile:
Makefiles provide options

What we Make

Compiler actually runs in stages:

a. Preprocessor
b. Compiler

c. Assembler

d. Linker

There are other tools to manage this:

e |DEs
e Projects
e Ant

source code

file

expanded
source code

file

assembler

file

object code

file

executable
file

progl.cpp

C++

preprocessor

temporary file; can be
printed on stdout

progl.s

assembler

1]

progl.o

#included header

files

object code for
library functions

1

progl

Dependency Tree - helps decide what to do

Each target T is dependent on one or more sources S
If any Sis newer than T, remake T.

Recursive: If a source is also a target for other sources, must also evaluate its
dependencies and possibly remake

lldemo

T linkedlist.o linkedlistclient.o —;

linkedlist.c linkedlist.h linkedlistclient.c

Directed-acyclic-graph
(cycles make no sense)

An algorithm to Make targets

=> Calculate build from dependencies
=> Have a list of tuples

€ Eachtuple made of Target, Sources, Command to build Target
€ Recursively determine which targets must be rebuilt
e Usually if one or more sources is newer than the target

=> Execute all necessary commands
=> Including re-linking the object files

Make Basics Smake uses a Makefile to determine

_ what to do
e Target- output file
® Prerequisites - sources needed Makefiles consist of rules in the form:
for that output Must have colon:
: Target : prerequisites
® Recipe - the command needed get .. + P g
to generate target. recipe/command

e Morethan onecommandis

possible, possibly on multiple ... Mak‘? Isn’t laf"guage
specific: recipe may be any
lines.

valid shell command
e You don’t always need sources

Unless specifically set
otherwise, recipes MUST be
indented with TAB not spaces.

Multi-line commands may \
Have lines split with \
backslashes

Special Rules

‘Phony’ targets

Targets are not actually files, but often used
commands

A phony target may have no dependencies:

clean:
rm -f *.o0 talk *~

(Phony targets will never be called if files by
those names exist, so must be forced. Refer
to manual.)

‘All’ is a special phone target that just
specifies what to make in a complete build.

Often the first ‘default’ target

phony all specifies every \
target to make.
all: talk
talk: main.o speak.o shout.o
gcc -Wall -std=cll -g -o talk
main.o speak.o shout.o

Using ‘make’

$make [-f makefile] [options] ... [targets] ...

If no -f use a file named Makefile

If no target specified use the first one in the file

$ make talk

gcc -Wall -std=cll -g -c main.c

gcc -Wall -std=cll -g -c speak.c

gcc -Wall -std=cll -g -c shout.c

gcc -Wall -std=cll -g -o talk main.o
speak.o shout.o

$ make clean

rm -f *. o0 talk *~

Use other author’s Makefiles:

You can download a tarball, extract it,
type make (four characters) and
everything should work

Actually, there’s typically a “configure”
step too, for finding things like “where
is the compiler” that generates the
Makefile (but we won’t get into that)

The mantra: ./configure; make; make
install

Talk Demo

talk
e
ShOUt.O speok.o main.o
speak.c

shout.c main.c

shout.h speok.h

CC = gcc

. CFLAGS = -Wall
Varlables foo.o0: foo.c foo.h bar.h
$(CC) $(CFLAGS) -c foo.c -o foo.o
e You can define variablesin make CFLAGS=-g
Makefiles —_—
o Set defaults at top of file ifdef WINDIR # defined on Windows
EXE=.exe

o Reduce repetitive typing

endif
o Changevariables at command widget$ (EXE): foo.o bar.o
line $(CC) $(CFLAGS) -o widget$ (EXE)\

foo.o bar.o

o Reuse Makefiles on new
OBJFILES = foo.o bar.o baz.o

projects widget: $(OBJFILES)
o Use conditionals to choose gcc -o widget $ (OBJFILES)

variable settings clean:

rm $(OBJFILES) widget

Extra Characters

> In commands (short list): Also use wild cards (ex. *.0), but
o $@ for target you need to be careful.
o $Afor all sources
@) $< for left-most source Use the ‘wildcard’ function for
> Examples: precision.

o widget$(EXE): foo.o bar.o
$(CC) $(CFLAGS) -0
S@ S
o foo.0: foo.c foo.h bar.h
$(CC) $S(CFLAGS) -c $<

Fancy Stuff (use with care!)

Implicit rules:

Make automatically applies rules to common types of files
n.o is made automatically from n.c with a recipe of
the form ‘$(CC) $(CPPFLAGS) $(CFLAGS) -c’.

Pattern rules:
Define new implicit rules by using ‘%’ as a type of wildcard

$.0 : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

%$.class: %.java
javac $< # Note we need $< here

Commands can be any
valid shell command,
including shell scripts

Repeating targets can
add dependencies
(useful for automatic
target generation)

Suffix rules:
Old form of pattern
rules using only suffixes

Dependency Generation

Make has no knowledge of dependency trees
If you make a mistake in your source list make can’t fix it.
Consider auto-generation:

In C:
Sgcc -MM target.c

Can ‘make depend’:
depend: $ (PROGRAM C FILES)

gcc -M $7

Summary

* Smake uses Makefiles to encode build processes
o Automate process
m Forshipment?
m Convenience
m Reliability
o Reduce unnecessary rebuilds
o Provide build options

% Smake relies on tuples of [Target(s), Source(s), Command(s)]
% Smake relies on timestamps and shell commands
o Language independent

% Many convenient additional variations
o Use with care - can obfuscate meaning

Problem of multiple ‘main’ functions

//sample.c You would not use two ‘main’ functions,

bdefine WIN32 because main is always the single entry point.

#ifdef WIN32 (Note: It works in Java becasue we can define
int main () { ¢ .)
one ‘main’ for each class namespace. We don’t

//in this case only this main/() .
will be compiled. have the same concept of namespacesin C.)

}
#endif Your code could define two mains, and choose

#ifdef LINUX one at pre-process time.
1 e

int main () {)
//another main for linux platform You could also include code that was chosen

} with a compiler flag (such as #ifdef DEBUG).
#endif

