
CSE 374 Lecture 15
Week 6: More preprocessor, Multiple Files

Compiling in
more detail

Compilation process is actually
multi-step

Multi-file compilation requires
knowing more details

Stop after the preprocessor and
 store the preprocessed C file in
 file.pp
 $ gcc -E file.c > file.pp

Stop after the compiler and store
 the assembly code in file.s
 $ gcc -S file.c

Stop after the assembler and
 store the machine code in file.o
 $ gcc -c file.c

Preprocessor Review (and header files)

The preprocessor rewrites
code before the compiler
gets it.

Has multiple roles:
Include header files
Define Constants
Define Macros
Conditional Compilation

#include <stdlib.h>
#include <userfile.h>
Header files
 Always use ‘.h’,
 Headers include function, struct,
 constant declarations
 Never include function implementations
 Never include ‘.c’
$gcc -l : look in specific
directories

Symbolic Constants & Macros

➔ Creates TOKEN to represent more
text

➔ Preprocessor:
◆ Replaces all matching TOKENS in

rest of file
◆ Knows where words start and end
◆ Has no notion of scope (not the

compiler)
➔ Can shadow another #define
➔ Use #undef to remove

Constants:

#define SYMBOLIC_CONSTANT value
#define NOT_PI 22/7
#define VERSION 3.14
#define FEET_PER_MILE 5280
#define MAX_LINE_SIZE 5000

Macros

Replace all matching “calls” with “body”
but with text of arguments where the
parameters are (just string substitution)

Gotchas (understand why!) ->

Macros DO NOT avoid performance
overhead of a function call (maybe true in
1975, not now)

Macros CAN BE more flexible though
(type-inspecific)

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) {

return x+x; }

y=3;
z=4;
w=TWICE_AWFUL(y+z); [y+z*2]
z=TWICE_BAD(++y); [++y + ++y]
z=TWICE_BAD(y++); [y++ + y++]

Justifiable Macros

Parameterized macros are generally to be avoided (use functions)

There are things functions cannot do:

#define NEW_T(t, howmany) ((t*)malloc((howmany)*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n", __FILE__, __LINE__,x)

Be very careful with syntax if you do use them

Conditional Compilation

#ifdef FOO
// only compiled if FOO is defined
#endif

#ifndef FOO
// only compiled if NOT FOO
#endif

#if FOO > 2
// only compiled if FOO > 2
#endif

// use DBG_PRINT for debug-printing
#ifdef DEBUG
#define DBG_PRINT(x) printf("%s",x)
#else
// replace with nothing
#define DBG_PRINT(x)
#endif

DBG_PRINT("hello world!\n");

$ gcc -D DEBUG foo.c
// or with #define

#ifndef: header file inclusion

#ifndef FOO_H

#define FOO_H

 and end it with:

#endif

● Assuming nobody else defines SOME_HEADER_H
(convention)
○ first #include "some_header.h" will do the define

and include the rest of the file
○ second and later will skip everything

● More efficient than copying the prototypes over
and over again

● In presence of circular includes, necessary to
avoid “creating” an infinitely large result of
preprocessing

Linked List Continued

● One set of code to define
linked list:
○ Linkedlist.h
○ Linkedlist.c

● Another piece of code uses it:
○ Linkedlistclient.c
○ Also include linkedlist.h

Compile with

$gcc -o lldemo linkedlist.c
linkedlistclient.c

