
CSE 374 Lecture 13
Week 5
Typedefs, structs, data structures

Datatypes in C

● Void: a placeholder
● Numbers: int, short, long, double, float, ... (signed, unsigned)
● char: really a very short int (1 byte) interpreted as a printable character
● Pointers (T*): int, char, double, char*, ...
● Arrays (T[]): int arr[], char arr[], char* arr[], …

○ Implicit promotion to pointer when passed as an argument to a function or returned
from a function

● Booleans? Not defined in C
○ 0 or NULL is always considered "false" and anything else is true

● Advanced: Union T, Enum E, Function pointers

Typedef

Not really a new type - just creating an alias for an existing type

typedef <type> <name>;

In C, strings are "char*", but if I wanted to actually provide the name "string", I could!

 typedef char* string;
 int main(int argc, string *argv) {
 string s = "hello, world!";
 printf("%s\n", s);
 }

Type-casting (converting one type to another)

● Syntax: (t)e where t is a type and e is an expression (sameas Java)
● If e is a numeric type and t is a numeric type, this is a conversion

○ To wider type, get same value
○ To narrower type, may not (will get mod)
○ From floating-point to integer, will round (may overflow)
○ From integer to floating-point, may round (but int to double is exact on most machines)

main() {
 int sum = 17, count = 5;
 double mean;
 mean = (double) sum / count;
 printf("Value of mean : %f\n", mean);
}

Implicit casting

● When necessary the compiler automatically converts from one type
to another (more general) type
○ Promotes to integers, then to larger integers, then to floating point
○ During arithmetic
○ R-value converted to L-value

For details:
https://www.oreilly.com/library/view/c-in-a/0596006977/ch04.html

Pointer-casting

If e has type t1*, then (t2*)e is a (pointer) cast.
You still have the same pointer (index into the address space).

Nothing “happens” at run-time.
Just “getting around” the type system - can write any bits anywhere you want.

void evil(int **p, int x) {
int *q = (int*)p;
*q = x; }

void f(int **p) {
evil(p,345);
**p = 17; // writes 17 to address 345 Best case - crash

}

Structs

● New datatypes
○ a record, containing one or

more fields
○ Stored adjacently in memory

● Like Java class, except no
methods

● Access a field S.f
● If S *Ps then Ps.f

○ shortcut S->f

struct person_info {

char * name;

int age;

}

Struct-tags

Has type struct
person_info

‘Person_info’ is a struct
tag, not a type

Can use typedef to rename

// struct person_info {

typdef struct person_info {

char * name;

int age;

} person_info;

// }

Parameters / Arguments
Reminder:

Function parameters initialized with a copy
of corresponding argument

If the argument is a pointer, the parameter
value will point to the same thing, of course

Arrays are passed as pointers (remember?)

(Demo: point.c)

Even with a struct a copy is created

Since this won’t change the original struct, it
is more common to use a pointer to the
struct

Avoids copying large objects

Allows manipulation of original object (can
write functions like Java methods)

But, sometimes, want to pass-by-value.
THINK!!

Linked Lists

List-> Next->Data NULLDataNext->Data

Last node doesn’t
point to next

Points to
the List

// A single list node that stores an
integer as data.

typedef struct IntListNode {
 int data;
 struct IntListNode* next;
} IntListNode;

IntListNode* makeNode(int data, IntListNode* next) {
 IntListNode* n = (IntListNode*) malloc(sizeof(IntListNode));
 if (n) { // malloc might return null
 n->data = data;
 n->next = next;
 }
 return n;
}

Typedef struct ex.

typedef int int32; // use int32 for portability
typedef struct point { // type tag optional (sortof)

int32 x, y;
} Point2d; // Point2d is synonym for struct
typedef Point2d * ptptr; // pointer to Point2D
Point2d p; // var declaration
ptptr ptlist; // declares pointer

