
CSE 374 Lecture 10
(Week 4: C continued)
Storage and Scope

Include file clarity

1. You create a .h file to share code with another caller
a. Declare any variables and functions you want another caller to user
b. Functions you want to use only in the same file are declare in the .c file

2. If you have a.c, which uses printf, you would include <stdio.h>
3. If you have b.c, which uses printf, and includes “a.h” you do not

need to include <stdio.h>, however
4. Generally, include any header files needed for directly-called functions

(promotes encapsulation), so b.c would include <stdio.h>

Function
prototyping

clarity

Function name and return type of
int assumed, but not argument list -
parameter checking is turned off.

Forbidden by c11 standard (try
compiling with -std=c11)

It works if they are defined in the
same file, but is not reliable and
shouldn’t be done.

Functions called before declared
are ‘implictly declared’, but
functions should be prototyped.

Storage

● Variables need a place to live in memory
● Get ‘allocated’ a physical space in memory (with an address)
● Size of memory allocation depends on datatype
● Get ‘deallocated’ to release the space in memory

Address ‘0’
Address ‘4’

Address ‘264-1’ or ‘232-1’

code heap ->globals <- stack

Scope

Variables may be
accessed by the
caller only at certain
times - this is scope

Scope and storage
are related, but not
the same thing

● Global variables
○ Scope: entire program
○ Not desirable (violate encapsulation) But

can be OK for truly global data like
conversion tables, physical constants,
etc.

● Static global variables
○ Scope: containing file
○ Static functions cannot be called from

other files
● Static local variables
○ Scope: that function, rarely used
● Local variables (automatic)
○ Scope: that block – With recursion,

multiple copies of same variable (one per
stack frame/function activation)

allocated before
main, deallocated
after main -
memory in ‘global’
block

allocated “when
reached”
deallocated “after
block” - memory in
frame on stack

Initialization

Memory allocation and initialization are not the same thing

Unlike Java, you MUST provide a value to initialize a bit of
memory

It is possible to access un-initialized bits
unlike Java with sets defaults and checks for initialization
best case scenario: you crash

Values may be numbers (or characters) OR addresses
9 = x; // Nonsense, because 9 isn’t a LOCATION
int x = 1; // Stores the VALUE 1 at a LOCATION which has the LABEL x.
x = 2; // Stores the VALUE 2 at the LOCATION x.
int* xPtr = &x; // Stores VALUE of address of x at a LOCATION labelled xPtr.
*xPtr = 3; // Stores VALUE 3 at a LOCATION defined by address stored in xPtr.
int** xx = &(&x);// Nonsense, the r-value needs to resolve to a value.
 // &x does indeed represent a value (the address x), but
 // &(&x) refers to the address of the address of x -
 // which is just a number and not stored anywhere

L-values v. R-values
Left Side

Evaluated to locations (addresses)

Right Side
Evaluated to values (the contents
at the address)

Arguments

Storage allocation and variable
scope is like local variables (i.e.
space is part of the function frame
added to the stack, and the
variable may be used in the
function).

All arguments passed by value.
(i.e. a copy of the value is made
and assigned to the variable.)

Demo

Pointers to pointers

Levels of pointers make sense:
I.e.: argv, *argv, **argv
Or: argv, argv[0],
argv[0][0]
But
&(&p) doesn’t make sense
void f(int x) {

int*p = &x;
int**q = &p;
// x, p, *p, q, *q, **q

}

Integer, pointer to integer, pointer to
pointer to integer

&p is the address of ‘p’,

&(&p) would be the address of the
address of p, but that value isn’t stored
anywhere and doesn’t have an address

Try using printf (“The address
of x is %p\n”, &x);

Dangling
pointers

Garbage collecting languages (like Java)
only delete memory that is unreachable
to avoid this problem.

Pointers referring to
memory that has been

released (Demo)

Pointer arithmetic
● If p has type T* or T[] and *p has type T
● If p points to one item of type T, p+1 points to a place in memory

for the next item of type T
○ So, p[0] is one item of type T, p+i = p[i]

● T[] always has type T*, even if it is declared as T[]
○ Implicit array promotion

Result: Arrays are always passed by reference, not by value. (The
information passed is the address of where the values are
stored.)

Arrays again
“A reference to an object of type
array-of-T which appears in an
expression decays (with three
exceptions) into a pointer to its first
element; the type of the resultant
pointer is pointer-to-T.”

http://c-faq.com/aryptr/aryptrequiv.ht
ml

Right: x is the array, which
decays to a pointer to an int and
&x returns a pointer to the entire
array.

void f1(int* p) { // takes a pointer
 *p = 5;
}
int* f2() {

int x[3]; // x on stack, is pointer
x[0] = 5;
(&x)[0] = 5; // address of x, points to
 // same place but different T
*x = 5; // put value at location x
*(x+0) = 5; // Also put value at x
f1(x);
f1(&x); // wrong – watch types!
x = &x[2]; // No! X isn’t really a pointer
int *p = &x[2];
return x; // correct type, but is a
 // dangling pointer

}

http://c-faq.com/aryptr/aryptrequiv.html
http://c-faq.com/aryptr/aryptrequiv.html

