
 CSE 374 Midterm Exam 5/3/2019

Name __ Id # _______________

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 10 Linux Commands

2. ______ / 6 Aliases

3. ______ / 6 Getting Help

4. ______ / 22 Scripting

5. ______ / 16 Grep/sed

6. ______ / 16 C analysis

7. ______ / 24 C programming

8. ______/ 2 Extra Credit

The last page of the exam contains reference information that may be useful while
answering some of the questions. Do not write on this page – it will not be examined.

 CSE 374 Midterm Exam 5/3/2019

Question 1. (10 points as 2,2,2,4 pts.) Linux commands. Here is a brief transcript from a
Linux terminal session (user input follows each $ prompt, the rest is system output):

$ pwd
/home/bashexpert

$ ls -R
.:
374files csehome cutilities Desktop bin TRASH

./374files:
hw3 hw4 lec10 lec13 lec3 lec5 lec7 lec9 hw3.tar
hw5 lec11 lec2 lec4 lec6 lec8 welcome.message

./374files/hw3:
cdf.eps popular.html runexperiment.sh myurls.txt
popular-small.txt runexperiment.sh produce-cdf.gnuplot
scatterplot.eps parse.sh produce-scatterplot.gnuplot
testurls perform-measurement.sh results.txt

./374files/hw4:
gasp gasp.c gasptest.c newout

./374files/lec10:
Argumentdemo argumentdemo.c dangling dangling.c

< … truncated for space …>
./scripts:
clean fibo msdel

./TRASH:
gasp.c~.tar Makefile~.tar

Based on the above, please answer the following prompts:

Write a command to see what is in the ‘welcome.message’ file while in your current
directory:

 CSE 374 Midterm Exam 5/3/2019

Write a command to determine which of the scripts in your bin folder are executable:

Write a command to remove all the ‘tar’ files from TRASH:

Most of the items in 374files are directories. You run the command:
$ wc `ls -R 374files/*/*.c`
Please describe what this command will do. Be specific about which files will be
considered, and what the output of the command is.
Hint, describe what the input to wc is, and then what wc creates.

 CSE 374 Midterm Exam 5/3/2019

Question 2. (6 points, 3 each) Aliases. Give alias commands that will create aliases
that work as described below.

(a) Define an alias mkex that allows you to put personal scripts to use. This alias
will make the input file(s) executable for the user and all group members. You
will use the alias with $mkex newscriptfile.

(b) You have run python clint.py on your new C file and received the error
message “Line ends in whitespace”. This happens frequently, so you decided to
make an alias (rmws) that will automatically run your sed command (sed
‘s/\s*$//g’) to remove it. Assuming you creates the alias rmws correctly to
run the precise sed command above, please show how you would use this
command to process a file newcode.c and save the updated code in a file called
newcode2.c.

Question 3. (8 points) Getting help.

You know there is a command that can give you information about the ‘network
interface’. What can you type at your prompt to find that command?

You discovered that ifconfig will probably do the trick. List THREE things that you
could do to understand ifconfig and how to use it. If something involves the
command line, be specific about exactly what commands you would use.

 CSE 374 Midterm Exam 5/3/2019

Question 4. (22 points) Scripting:

What is the difference between using source with a file, and calling the file as an
executable?

Write a shell script called ‘worknew’ that takes a file name as the first command-line
argument, followed by zero or more directories. The script will print the number of
recently (in the past week) modified files in a directory to the file given as the first
argument.

• If no arguments are provided, print an appropriate error message to stderr
(stream 2) and exit with return code 1. Otherwise exit with return code 0.

• You should check the directories for existence; if a directory is not a valid
directory print an error message to stderr and continue to the next argument.

• Your script should handle file names that have embedded blanks in them like
“output file”.

• If no valid directories are provided the output file will be empty.

For example, if you execute the following command with your script worknew.sh, the
file counts.txt should contain one line with the number of files in lec11 that have
been modified in the last week. Having multiple directories on the input should produce
a multi-line output file.

 $./worknew.sh counts.txt ~/374files/lec11
 $ more counts.txt
 /home/youruserid/374files/lec11: 3

Hints:

• There may be some useful info on the last page of this exam.
• You know that the command [find dirname -type f -mtime -7] will

produce an output of all the files that have been modified in the past week.
• Counting the number of lines in the output should provide the correct value for

your report.
• You will get partial credit: if you think you are doing something confusing,

consider commenting it with ‘#’.
• You will not be penalized for white-space or (lack-of) comments on this question.

 CSE 374 Midterm Exam 5/3/2019

Write your answer below. The #!/bin/bash that starts the script is provided for you.

#!/bin/bash

 CSE 374 Midterm Exam 5/3/2019

Question 5. (16 points: 4,4,8pts each) (grep/sed)

You run the following command in your ‘home’ directory: grep ‘alias’ .bash*
What do you expect to find?

You were pleased that your alias from earlier in the test worked. Explain each section of
your sed command: sed ‘s/\s*$//g’

You have decided to change your name. You know that all of your .c files have a line
denoting authorship which looks like:
/* filename, authored by Your Name possibly something else
Write a sed command that will replace each instance of Your Name in the above
context with New Name, in every .c file in the current directory.
Hint – you may collect all the non-name text in backreferences to be used in the
replacement string.

 CSE 374 Midterm Exam 5/3/2019

Question 6. (16 points) Analyze a C program. As is usual, this program compiles and
executes without warnings or errors. Then, answer the questions on the following page.

#include <stdio.h>

void functionB(int *y, char *z) {
 *y = 100;
 z[0]=z[1];
 printf("y=%d, z=%s\n", *y, z);
}

void functionA(int *w, char *x) {
 int temp = *w;
 functionB(w, x+1); /* Note this!! */
 *w = *w+temp;
 printf("w=%d, x=%s\n", *w, x);
}

int main (void) {
 int a = 77;
 char b[] = "cat";

 printf("a=%d, b=%s\n", a, b);
 functionA(&a, b);
 printf("a=%d, b=%s\n", a, b);

 return (1);
}

This code prints four lines. Please write these lines, precisely as they are printed, in order
below. If you would like, use the space on page 10 to draw a diagram showing the
contents of memory as the program executes.

Printf1: ______________________________________

Printf2: ______________________________________

Printf3: _______________________________________

Printf4: _______________________________________

 CSE 374 Midterm Exam 5/3/2019

Question 6. Continued (4pts):

You wish to add a return statement to functionA:
 return &temp;
Assuming you change the return type, and then use the value in main, what other issues
are there with taking this step? How could you fix them?

You have run the program, but still don’t know why the answer is what is. Please
describe something you can do using gdb to help understand what value is in each
variable at any given time.

 CSE 374 Midterm Exam 5/3/2019

Question 6. (optional) Draw your diagram here showing the contents of memory during
execution of the mystery program.

Question 7. (24 points) C programming.

You are working on a program to read in data about people, and perform some analysis
on your set of data. In this problem, you will be slowly building functionality towards
the end goal of having a linked list of people who can be sorted on various parameters.

The set up for the code is here:

#include <stdio.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define MAX_NAME 25

// define a struct person here

person* makePerson (char *name, int a);
int orderPeople (person *p1, person *p2);

int main (int argc, char** argv) {

}

 CSE 374 Midterm Exam 5/3/2019

(a) (4 points) First, you will need to define your struct that stores a single person. For
now, your records will include a name, and an age. Please notice that a MAX_NAME
was created to set a length limit for the name.

(b) (8 points) Now that you have your struct, write the two supporting functions that have
forward declarations above – one to make a new person, and one to sort two people. For
now, ‘orderPeople’ will return ‘1’ if p1’s name comes first alphabetically, and ‘2’
otherwise.

person* makePerson (char *name, int a) {

int orderPeople (person *p1, person *p2){

 CSE 374 Midterm Exam 5/3/2019

Question 7. (cont.) (8 pts) Now, write the main program that uses the file given as an
argument to the program (i.e., argv[1]). In this file you will find lines of text with a
name, followed by a space, followed by an age:

 Karel 30
 Bee 42

Of course, you will want to do some error checking. You will also want to exit with an
error message if anything goes wrong. You will want to use good file-handling and
string manipulation practices. If everything goes right you will want to do the following:

1. For two people
a. Get the name, age pair from the input file
b. Create a new person with that data

2. Figure out what order the two people are in
3. Print a line of output with the result of (2)

int main(int argc, char **argv) {

 CSE 374 Midterm Exam 5/3/2019

Question 7. (cont.) (4 pts)

You are concerned that you may have created a memory leak in your code. Before you
move on to add more functionality, what steps can you take to examine your heap usage?
Please put the command you might use at a prompt:

The first time you run your program it produces a seg-fault. What gdb command can you
use to determine the state of the code when this occurs?

Extra Credit (2 pts)

What do the people in the following list have in common?
Mark D, Clarence E, Philip E, Timnit G, Grace H, Margaret H, Katherine J, Ada L,
Jerry L, Ellen O, Alan T, Jeannette W.

 CSE 374 Midterm Exam 5/3/2019

Reference Information

Some of this information might be useful while answering questions on the exam. Do
not write on this page – anything written here will not be graded.

Shell: Some of the tests that can appear in a [] or [[]] test command in a bash script:

• string comparisons: =, !=
• numeric comparisons: -eq, -ne, -gt, -ge, -lt, -le
• -d name test for directory
• -f name test for regular file

Shell variables: $# (# arguments), $? (last command result), $@, $* (all arguments), $0,
$1, … (specific arguments), shift (discard first argument)
Redirect with >, >>. ‘&1’ is the location of stdout, ‘&2’ is the location of stderr.
Create an empty file: use ‘touch’
Execute a command in the stream: use backquotes, or pipe (there is a difference)

Strings and characters (<string.h>, <ctype.h>) Some of the string library
functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst,
adding ‘\0’s at end if fewer than n characters in src so that n chars. are copied.

• char* strcpy(dest, src)
• char* strncat(dest, src, n), append up to n characters from src to the end of

dest, put ‘\0’ at end, either copy from src or added if no ‘\0’ in copied part of src.
• char* strcat(dest, src)
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length)
• int strlen(s)
• Character tests: isupper(c), islower(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Files (<stdio.h>)

• Default streams: stdin, stdout, and stderr.
• FILE* fopen(filename, mode), modes include “r” and “w”
• char* fgets(line, max_length, file), returns NULL on end of file
• int fscanf(FILE* stream, const char* format, …), reads text with printf

formatting. Additional arguments are pointers to the requested data types.
• int feof(file), returns non-zero if end of file has been reached
• int fputs(line, file)
• int fclose(file)
• A few printf format codes: %d (integer), %c (char), %s (char*)

