
 CSE 374 Midterm Exam 4/27/18

Name __ Id # _______________

There are 6 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 8 Linux Commands

2. ______ / 8 Aliases

3. ______ / 6 Getting Help

4. ______ / 20 Scripting

5. ______ / 16 sed

6. ______ / 18 C analysis

7. ______ / 24 C programming

The last page of the exam contains reference information that may be useful while
answering some of the questions. Do not write on this page – it will not be examined
while grading. You may remove that page from the exam if you wish.

 CSE 374 Midterm Exam 4/27/18

Question 1. (8 points, 2 each) Linux commands. Here is a brief transcript from a Linux
terminal session (user input follows each $ prompt, the rest is system output):

$ cd

$ pwd

/homes/astudent

$ ls -l

-rw-rw---- 1 astudent 10 Apr 27 09:32 a.txt
-rw-rw---- 1 astudent 8 Apr 27 09:32 b.txt
drwxrwxr-x 2 astudent 4096 Apr 27 09:38 temp

$ cd temp

$ ls

anotherdir a.txt.tmp b.txt.tmp nottmp.txt

$ cd ..

$ mv ~/b.txt temp

After each of the following commands, write the output that it produces or give a
command to achieve the goal. You should assume that the first command (part a) is
executed immediately after the above commands and each subsequent line of commands
is executed after the commands in the previous parts of the question have been executed
(i.e., the commands in parts (a) through (d) are run one after the other).

(a) x=* ; echo $x > e.txt ; cat e.txt

(b) whoami

(c) Write a command to make the file b.txt readable by everyone.

(d) Write a command to remove all temporary files (which end with the extension .tmp)
from the temp directory and all its child directories. Only remove .tmp files.

 CSE 374 Midterm Exam 4/27/18

Question 2. (8 points, 4 each) Aliases. Give alias commands that will create aliases
that work as described below.

(a) Define an alias edit that will allow you to easily edit your .bashrc file. The alias
should open emacs to allow you to edit .bashrc, and then call source on it to
load/execute it. Remember that .bashrc is located in your home directory.

(b) Define an alias ... (three dots) that moves you into the grandparent directory of your
current working directory (i.e. the grandparent is the parent directory of the parent
directory of the working directory).

Question 3. (6 points) Getting help. You are told that you will need to use the program
cal to implement your homework assignment. List THREE things that you could do to
understand cal and how to use it. If something involves the command line, be specific
about exactly what commands you would use.

 CSE 374 Midterm Exam 4/27/18

Question 4. (20 points) (Scripting) Write a shell script that takes a file name as the first
command-line argument, followed by zero or more integers. The script should calculate
the sum of the provided integers and print the sum to the file given as the first argument.

• If an integer is less than 0, you should add its absolute value to the sum (i.e. if the
integer is -4, you should add 4 to the sum).

• If no arguments are provided, print an appropriate error message to stderr
(stream 2) and exit with return code 1. Otherwise exit with return code 0.

• Your script should handle file names that have embedded blanks in them like
“output file”.

• If no integers are provided, the sum is 0.

For example, if you execute the following command with your script sum.sh, the file
sum.txt should store the single value "8" (which is 1+3+0+4).

 $./sum.sh sum.txt 1 3 0 -4

Write your answer below. The #!/bin/bash that starts the script is provided for you.

#!/bin/bash

 CSE 374 Midterm Exam 4/27/18

Question 5. (16 points) (grep/sed) You may have noticed that on the course website,
some email addresses are written with "[at]" instead of "@", which is to prevent scripts
from easily identifying personal email addresses and sending spam email.

								Contacts	for	CSE	374:	
								mwinst[at]gmail.com	(Instructor)	
								cse374-staff@cs.washington.edu	(for	staff	-	prefer	this	one!)	
								For	grading	questions,	email	your	TA	
								ta[at]cs.uw.edu

Since you now know regular expressions, you want to write a command to extract all
email addresses from the file, even if they have "[at]" instead of "@".

Give a single Linux command line that will print all email addresses from the file input
(and ONLY the email addresses), with any "[at]" replaced with "@".

If the contents of the file input are as above, the output of your command should be:

								mwinst@gmail.com	
								cse374-staff@cs.washington.edu	
								ta@cs.uw.edu	

You should assume that for this input file, any email addresses will be the first thing on a
line. An email address can contain any character except a space. You should also include
emails that already have "@" in them.

Hint: your command will probably have more than one command connected by a pipe (|).

Note: if the handwritten solution won’t fit on one line, just continue on a second line at
some obvious place, like right before or after any pipe (|) symbol. You may use "-E" for
extended regular expressions if you prefer.

 CSE 374 Midterm Exam 4/27/18

Question 6. (18 points) The traditional, annoying C program. As is usual, this program
compiles and executes without warnings or errors.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void bar(int *a, int b, int *c, char *d) {
 c[1] = *a + b;
 d[*c] = d[2];
 b = 17;
 int *r = c + 1;
 c = a;
 *c = *a + 1;
 printf("during: %d %d %d %d %s\n", *a, b, *c, *r, &d[1]);
}

int main(int argc, char **argv) {
 char cat[7] = "dog";
 int x = strlen(cat);
 int z[3];
 z[0] = 1;
 z[1] = 2;
 z[2] = 4;
 int *p = &x;
 int *q = &z[1];
 q[1] = *p + 10;
 printf("before: %d %d %d %d %s\n", z[0], z[1], z[2], x, cat);
 bar(p, x, q, cat);
 printf("after: %d %d %d %d %s\n", z[0], z[1], z[2], x, cat);
 return 0;
}

Fill in the lines below to show the output produced when this program is executed. If you
would like, use the next page to draw a diagram showing the contents of memory as the
program executes. This will help us to give you partial credit if the answer you give is
incorrect. Show boxes for the local variables and parameters of all active functions.

before: ______________________________________

during: ______________________________________

after: _______________________________________

 (use the next page for drawing a diagram of memory, if you'd like)

 CSE 374 Midterm Exam 4/27/18

Question 6. (optional) Draw your diagram here showing the contents of memory during
execution of the mystery program.

 CSE 374 Midterm Exam 4/27/18

Question 7. (24 points) C programming.

"Pig Latin" is a language transformation in which the first character of a word is moved
to the end and "ay" is added:

 "banana" => "ananabay" "dog" => "ogday"
 "cat" => "atcay" "pool" => "oolpay"

If a word already starts with a vowel, then "ay" is added but the first character is not
moved to the end:

 "aardvark" => "aardvarkay" "ear" => "earay"
Write a C program that will read a text file that contains one word per line and print to
stdout the Pig Latin forms of the words, one per line. You can assume all words are
entirely lowercase.

You should use standard C library functions in your solution when appropriate (the last
page of the exam contains a summary of some that might be useful). You do not need to
write #include directives – assume this has been done for you.

(a) (8 points) Complete the function pig(s) below so it modifies the string parameter to
store the Pig Latin form of the word. The string s is a proper C string – an array of
characters with a ‘\0’ byte at the end – and pig can assume that it has extra allocated
space for the two "ay" characters to be appended. Hint: a vowel is 'a', 'e', 'i', 'o', or 'u'.

// Modifies the given string into Pig Latin form.
// Assumes s has extra allocated space for 2 more chars.
void pig(char *s) {

}

(continued on next page)

 CSE 374 Midterm Exam 4/27/18

Question 7. (cont.) (b) (16 points) Now, write the main program that opens the file given
as an argument to the program (i.e., argv[1]), reads each line in that file, and prints the
Pig Latin form of the word on that line to stdout. If the file name is missing, or if the
file cannot be opened, the program should print a suitable message to stderr and
terminate with EXIT_FAILURE. If no error is detected, the program should terminate
with EXIT_SUCCESS when it is done. Your program must use the pig function from
part(a) to transform words into Pig Latin.

You may assume that no line of the input has more than 100 characters, including any
newline (‘\n’) or ‘\0’ bytes at the end of each line. An appropriate name has been
#defined for you to use. You may also assume that there is a ‘\n’ newline at the end of
the last line in the file if it matters. Hints: be sure that any ‘\n’ characters at the end of
input lines are not accidentally included when appending "ay" at the end. The output lines
may be more than 100 characters long given that you are adding "ay" to the end. You
should not use dynamic allocation (malloc/free) in your code – it is not needed.

#define MAX_LINE_LENGTH 100

int main(int argc, char **argv) {

}
(More space is provided on the next page for the rest of your answer if needed.)

 CSE 374 Midterm Exam 4/27/18

Question 7. (cont.) Extra space for your answer if needed.

 CSE 374 Midterm Exam 4/27/18

Reference Information

Some of this information might be useful while answering questions on the exam. Feel
free to remove this page for reference while you work. Please do not write on this page –
anything written here will not be graded.

Shell: Some of the tests that can appear in a [] or [[]] test command in a bash script:

• string comparisons: =, !=
• numeric comparisons: -eq, -ne, -gt, -ge, -lt, -le
• -d name test for directory
• -f name test for regular file

Shell variables: $# (# arguments), $? (last command result), $@, $* (all arguments), $0,
$1, … (specific arguments), shift (discard first argument)

Strings and characters (<string.h>, <ctype.h>)

Some of the string library functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst,
adding ‘\0’s at end if fewer than n characters in src so that n chars. are copied.

• char* strcpy(dest, src)
• char* strncat(dest, src, n), append up to n characters from src to the end of

dest, put ‘\0’ at end, either copy from src or added if no ‘\0’ in copied part of src.
• char* strcat(dest, src)
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length)
• int strlen(s)
• Character tests: isupper(c), islower(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Files (<stdio.h>)

Some file functions and information:

• Default streams: stdin, stdout, and stderr.
• FILE* fopen(filename, mode), modes include “r” and “w”
• char* fgets(line, max_length, file), returns NULL on end of file
• int feof(file), returns non-zero if end of file has been reached
• int fputs(line, file)
• int fclose(file)

A few printf format codes: %d (integer), %c (char), %s (char*)

