
 CSE 374 Final Exam 06/06/18

 Page 1 of 14

Question 1 (8 points). Preprocessor. Consider the following program:

#include <stdio.h>

#define aardvark 5
#define sum(x,y) x+y
#define times(x,y) x*y

#ifndef aardvark
int magic = 2;
#define DEBUG(s) printf("%s\n", s)
#else
int magic = 3;
#define DEBUG(s)
#endif

void foo(int* a, int* b, int* c) {
 *a = 1 * *c;
 *b = 2 * times(*b, *a);
 *c = 3 * sum(*a, *b);
 DEBUG("in foo");
}

int main() {
 int w = aardvark;
 int x = 1;
 int y = magic;
 int z = 2;
 foo(&x, &y, &w);
 printf("%d %d %d %d\n", w, x, y, z);
 foo(&w, &w, &z);
 printf("%d %d %d %d\n", w, x, y, z);
 return 0;
}

Write the output of this program below.

45 5 30 2
8 5 30 32

 CSE 374 Final Exam 06/06/18

 Page 2 of 14

Question 2 (10 points). make. Suppose we have a project with multiple source files that
have the #include dependencies shown below.

* vehicle.h *

#ifndef VEHICLE_H
#define VEHICLE _H

...
#endif

* vehicle.c *

#include "vehicle.h"
...

* wheel.h *

#ifndef WHEEL_H
#define WHEEL_H

...
#endif

* car.h *

#ifndef CAR_H
#define CAR_H
#include "vehicle.h"
...
#endif

* car.c *

#include "car.h"
#include "wheel.h"
...

* main.c *

#include "car.h"

int main() {
 ...
}

If we’re being lazy, we could create an executable program from these files by executing the
command gcc -Wall -g -std=c11 -o main *.c.

On the next page, create a Makefile that builds an executable program named main from
these files as done by the gcc command above, but only recompiles and relinks the minimum
number of files needed after any changes are made to the source files. Your answer should be
done in two steps:

• First, construct the dependency graph that shows the dependencies between the source
files, the compiled .o files, and the final executable file main that is created by linking
the .o files.

• After drawing the dependency graph, write the final Makefile.

Write your answers on the next page.

 CSE 374 Final Exam 06/06/18

 Page 3 of 14

(2a) (5 points). Draw the dependency graph (diagram) showing dependencies between the files
on the previous page, the .o files created by compiling the .c files, and the final executable
program main.

vehicle.h vehicle.c car.h car.c wheel.h main.c

vehicle.o car.o main.o

main

(2b) (5 points). Give the contents of a Makefile that will build the program as described by
the dependency diagram above. The default target that is built if we just type make with no
arguments should be the executable program main.

 main: vehicle.o car.o main.o
 gcc –Wall –g –std=c11 –o main vehicle.o car.o main.o

vehicle.o: vehicle.c vehicle.h
 gcc –Wall –g –std=c11 –c vehicle.c

car.o: car.c car.h vehicle.h wheel.h
 gcc –Wall –g –std=c11 –c car.c

main.o: main.c vehicle.h car.h
 gcc –Wall –g –std=c11 –c main.c

 CSE 374 Final Exam 06/06/18

 Page 4 of 14

Question 3 (12 points). Debugging + scripting. While working on the memory manager for
HW6, your partner has discovered that the bench program crashes with a segmentation fault
when it is run with no arguments.

 $./bench
 Segmentation fault

You suspect that the problem is because you are accessing the command-line arguments (argv)
without properly checking that they are set first.

(3a) (5 points). Your partner doesn't know how to use gdb, but you do! Below, describe to your
partner the exact commands that they can execute to run gdb on the bench executable and see if
your hypothesis is true. This includes the commands that you will give to gdb itself.

Compile the program (make sure the -g flag is set!)
$ make
$ gdb ./bench

Within gdb:
run until it hits the segfault
run
see what function segfaulted and what the callstack was
hypothesis: it's in main where we access the argv – is the
crash in main
bt
list code around where we are
list
if the hypothesis was correct, and we're in main, we can print
our variables
print argv[1]
print argc
if we're not in main, but one of our arguments is derived from
argv, we can go up in the callstack to main
up

After the issues that your partner has been having, you decide to write a simple bash script to do
some basic validation. On the next page, write a script that does the following three things:

• Runs clint.py on all source files (.c and .h). Assume clint.py is in the same directory.
• Builds the executable with make.
• Runs the bench program with no arguments (bench target in the Makefile).

If any of the three commands exits with a status code that is not 0, then you should print an error
message to stderr and exit with status code 1. Otherwise, if all three exit successfully with status
code 0, exit with status code 0 without printing anything (redirect output for the other
commands). Write the script on the following page – some bash hints are provided.

 CSE 374 Final Exam 06/06/18

 Page 5 of 14

(3b) (5 points). Write a script to perform the three validation steps described on the last page.

Some of the tests that can appear in a [] or [[]] test command in a bash script:

• string comparisons: =, !=
• numeric comparisons: -eq, -ne, -gt, -ge, -lt, -le

Shell variables: $# (# arguments), $? (last command result), $@, $* (all arguments), $0, $1, …
(specific arguments), shift (discard first argument)
Blackhole file: /dev/null (used for suppressing output)

#!/bin/bash

clint.py
First method for running a command testing its exit code
if ! ./clint.py *.h *.c > /dev/null ; then
 echo "clint.py failed" >&2 ; exit 1
fi

Basic make
Second method for testing an exit code
make > /dev/null
if [$? -ne 0]
then
 echo "make failed" >&2
 exit 1
fi

Run bench
Third method for testing an exit code
make bench > /dev/null || { echo "bench failed" >&2 ; exit 1 ; }

exit 0

 (3c) (2 points). Give the shell commands to put the validate.sh script from the previous
question into your git repository and share it with your partner.

Your side
git add validate.sh
git commit -m "script to run before commits to validate repo"
git push

// Partner's side
git pull

 CSE 374 Final Exam 06/06/18

 Page 6 of 14

Question 4 (14 points). Tries. In HW5 we used a trie to store the words in a dictionary based on
the T9 digit sequences that encoded the words. For this problem, assume that a node is defined as
follows:

typedef struct Node { // one node in the trie:
 char* word; // C-string if this node has a
 // word attached, otherwise NULL
 struct Node* next[10]; // Subtrees. next[2] to next[9]
 // are subtrees for digits 2-9;
 // next[0] is the synonym ('#') link.
} Node; // For 0<=i<10, next[i]==NULL if
 // next[i] is an empty subtree.

For this problem, write a function called isAlphabetized that takes a struct Node* as
an argument and determines whether the words in the trie are alphabetized within each T9 digit
sequence. The function returns 1 if the trie is alphabetized, 0 if not.

You ONLY need to determine whether the words in each T9 group (those sharing the same T9
digit sequence) are in alphabetical order. You do NOT need to compare ordering across different
T9 digit sequences. For instance, you should verify that all words with the sequence 227 are
alphabetized relative to each other, but you do not need to check that they are in any particular
order relative to words with the sequence 2273.

You should assume that all necessary header files have already been #included and you do
not need to add any #includes. An empty trie or a NULL trie passed to your function is by
definition alphabetized. Duplicate words do not break alphabetization.

Hints: recursion really, really, really is your friend. Remember that all words with the same T9
digit sequence are represented as a node with a non-NULL word and all nodes that follow in the
0th (#) child position. Alphabetically later words are considered "greater".

A bit of (maybe) useful reference information about strings:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst, adding ‘\0’s
at end if fewer than n characters in src so that n chars. are copied.

• char* strcpy(dest, src)
• char* strncat(dest, src, n), append up to n characters from src to the end of dest,

put ‘\0’ at end, either copy from src or added if no ‘\0’ in copied part of src.
• char* strcat(dest, src)
• int strncmp(string1, string2, n), <0, =0, >0 if compare s1<s2, s1=s2, s1>s2
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length)
• int strlen(s)
• Character tests: isupper(c), islower(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Write your answer on the next page.

 CSE 374 Final Exam 06/06/18

 Page 7 of 14

Question 4 (cont). Write your implementation of the trie isAlphabetized function below.

// Returns 1 if words in the trie are alphabetized within
// each T9 digit sequence, 0 if they are not. Words are not
// compared across different T9 digit sequences.
int isAlphabetized(struct Node* root) {
 if (root == NULL) {
 return 1;
 }
 for (int i = 0; i < 10; i++) {
 if (!isAlphabetized(root->next[i])) {
 return 0;
 }
 }
 return
 root->word == NULL ||
 root->next[0] == NULL ||
 root->next[0]->word = NULL ||
 strcmp(root->word, root->next[0]->word) <= 0;
}

// Alternative approach, explicit next[0] iteration
int isAlphabetized(struct Node* root) {
 if (root == NULL) {
 return 1;
 }
 for (int i = 2; i < 10; i++) {
 if (!isAlphabetized(root->next[i])) {
 return 0;
 }
 }
 if (root->word != NULL) {
 while (root->next[0] != NULL &&
 root->next[0]->word != NULL) {
 if (strcmp(root->word, root->next[0]->word) > 0) {
 return 0;
 }
 root = root->next[0];
 }
 }
 return 1;
}

 CSE 374 Final Exam 06/06/18

 Page 8 of 14

Question 5 (12 points). Testing. Describe three black-box tests for the isAlphabetized
function from the previous problem. For full credit, the three tests must verify different things
about the implementation, and must describe the specific input or setup for the test and the
expected result. In your description of test inputs/outputs you should specify the characteristics
of the trie passed as input to the function. A drawing is not necessary, but we do expect specific
examples of word(s) and a reasonable explanation of how they are placed in the trie.

Some possible examples (definitely not complete):

INPUT:
 (empty) isAlphabetized(NULL)
OUTPUT:
 Returns 1
INPUT:
 (one node) root(word=ban), rest of children are NULL
OUTPUT:
 Returns 1
INPUT:
 (basic alphabetical) root(word=ban) [0]-> cam [0]-> can
OUTPUT:
 Returns 1
INPUT:
 (basic non-alphabetical) root(word=ban) [0]-> can [0]-> cam
OUTPUT:
 Returns 0
INPUT:
 (basic duplicates) root(word=ban) [0]-> ban [0]-> ban
OUTPUT:
 Returns 1
INPUT:
 (children of root) root[2] -> ban [0]-> can
 root[3] -> dad [0]-> fad
OUTPUT:
 Returns 1
INPUT:
 (children not alphabetized) root[2] -> ban [0]-> can
 root[3] -> fad [0]-> dad
OUTPUT:
 Returns 0
INPUT:
 (no modification) root[2] -> ban [0]-> can
 root[3] -> fad [0]-> dad
OUTPUT:
 Double check that tree structure is exactly the same after

 CSE 374 Final Exam 06/06/18

 Page 9 of 14

Question 6 (14 points). Memory management. Recall from HW6 that we can represent the free
list for the getmem/freemem storage allocator as a linked list of blocks. The beginning of each
block is described by the following C struct:

typedef struct FreeNode { // node on free list:
 uintptr_t size; // number of bytes in this
 // block, not including the
 // size of this header
 struct FreeNode* next; // next block on free list or
 // NULL if none
} FreeNode;

In HW6, we used malloc to request large chunks from the system. Clients then used
getmem/freemem to reserve smaller pieces of those chunks. However, we did not require you
to ever call free to release the chunks that we reserved with malloc. We will do that now.

(6a) (6 points). Write a function freeAll() that frees all memory that was allocated by
your memory manager with malloc. You should assume that all blocks that the client reserved
with getmem have been released with freemem, which means that the free list will store only
chunks that were allocated with malloc.

You should also assume that there is a global pointer variable that stores the address of the first
block on the free list; your code can access that variable:

 FreeNode* freeList; // free list blocks; NULL
 // if freeList is empty

Write your function below.

void freeAll() {

 while (freeList != NULL) {
 // We must save the next pointer before calling free.
 FreeNode* next = freeList->next;
 free(freeList);
 freeList = next;
 }

}

 CSE 374 Final Exam 06/06/18

 Page 10 of 14

(6b) (2 points). It's actually not a good idea to assume that all blocks that the client reserved with
getmem have been released with freemem, since a client program can behave incorrectly.
Describe in detail what might go wrong with the calls to free in freeAll in this case – why
would free fail? Hint: malloc/free are similar to getmem/freemem from HW6; you can
assume that free acts like freemem.

Two ways this could go wrong:
1) If some blocks are still reserved, then they won't be in the
 free list and we might not call free() on all of the blocks
 that we malloc'ed.
2) Since we split big malloc'ed chunks into smaller chunks for
 getmem, we may have blocks on the free list that are not
 directly allocated with malloc. If we try to free those
 chunks before they are merged back with their original
 partners, we would call free() with a pointer that was not
 allocated with malloc, which has undefined behavior (ie free
 won't be able to find the block information for that
 malloc'ed block).

(6c) (6 points). One way to solve this problem is to do "reference counting." We maintain a
global variable blocksAllocated, which starts at 0. Every time getmem is called and
returns a valid pointer (not NULL), we increase blocksAllocated by 1. Every time
freemem is called with a valid pointer (not NULL), we decrease blocksAllocated by 1. In
freeAll, we can then assert that blocksAllocated == 0 before freeing any blocks.

Define an integer blocksAllocated to accomplish this, then implement getmemWrapper
and freememWrapper to perform the reference counting (incrementing or decrementing of
blocksAllocated). These functions should call getmem and freemem to actually
accomplish the allocation/release of the blocks.

// Define blocksAllocated here:

uintptr_t blocksAllocated = 0;

void* getmemWrapper(uintptr_t size) {
 void* result = getmem(size);
 if (result != NULL) {
 blocksAllocated++;
 }
 return result;
}

void freememWrapper(void* ptr) {
 if (ptr != NULL) {
 blocksAllocated--;
 }
 freemem(ptr);
}

 CSE 374 Final Exam 06/06/18

 Page 11 of 14

Question 7 (12 points). C++. To explore a bit more C++, we’ve designed a simple class to
represent a tuple. A tuple is an ordered sequence of values – like a C array, except that we'll do
bounds checking to make sure that we don't access elements that aren't valid. We refer to the
number of elements in the tuple as the number of "dimensions".

The class declaration in file Tuple.h looks like this:

#ifndef TUPLE_H
#define TUPLE_H

class Tuple {
 public:
 // Construct a tuple with "dim" dimensions.
 explicit Tuple(size_t dim);

 // Destructor
 virtual ~Tuple();

 // accessor – returns value at the index
 int get(size_t index) const;

 // setter – sets the value at the index.
 void set(size_t index, int value);

private:
 // Array storing the tuple's value in each dimension
 int* point_;
 size_t dimensions_;
};

#endif // TUPLE_H

On the next page, give implementations for the four functions (constructor, destructor, get
accessor and set setter) that are declared but not implemented above.

Reminder: you'll need to declare an array on the heap since we don't know how big it is until the
constructor. You can use either new or malloc to achieve this. If the requested index is not
valid for get or set (it is larger than the largest valid dimension), then get should return 0 and
set should do nothing.

Write your answer on the next page.

 CSE 374 Final Exam 06/06/18

 Page 12 of 14

Question 7 (cont). Provide your implementation of the Tuple class declared on the previous
page as it would be written in the implementation file Tuple.cpp.

#include "Tuple.h"

// write your implementation of class Tuple below.

Tuple::Tuple(size_t dim) {
 point_ = new int[dim](); // the () sets all elements to 0
 dimensions_ = dim;
}

Tuple::~Tuple() {
 delete [] point_;
}

int Tuple::get(size_t index) const {
 if (index < dimensions_) {
 return point_[index];
 }
 return 0;
}

void Tuple::set(size_t index, int value) {
 if (index < dimensions_) {
 point_[index] = value;
 }
}

 CSE 374 Final Exam 06/06/18

 Page 13 of 14

Question 8 (10 points). C++ virtual mystery. Consider the following program, which compiles
and executes without error.

class B {
 public:
 B() { cout << "B()" << endl; }
 void foo() { cout << "B::foo" << endl; }
 virtual void bar() { foo(); cout << "B::bar" << endl; }
 virtual void baz() { bar(); cout << "B::baz" << endl; }
};

class Bob : public B {
 public:
 Bob() { cout << "Bob()" << endl; }
 void foo() { cout << "Bob::foo" << endl; }
 virtual void baz() { cout << "Bob::baz" << endl; }
};

int main() {
 B* m = new B();
 m->baz();
 Bob* n = new Bob();
 n->baz();
 B* p = (B*) n;
 p->bar();
 p->foo();

 return 0;
}

In the box to the right, write the output that is
produced when this program is executed.

Output:

B()
B::foo
B::bar
B::baz
B()
Bob()
Bob::baz
B::foo
B::bar
B::foo

 CSE 374 Final Exam 06/06/18

 Page 14 of 14

Question 9 (8 points). Concurrency. The following code in C++ manages a chef who is
cooking in a shared kitchen. The function will boil a pot for a given number of minutes. Suppose
we use this code in a program with two threads (T1/T2), both of which boil many pots.

(9a) (4 points). This code is not thread-safe. Give a brief explanation of what can go wrong if the
two threads are using these functions concurrently. You can write out a bad interleaving to the
right of the function above, circle sections of the code that have a data race, or write a descriptive
paragraph to the right of the function.

int burnersAvailable = 4;

bool boilPot(Pot* pot,
 int minutes) {

 m.lock();
 if (burnersAvailable > 0) {

 burnersAvailable--;
 m.unlock();

 placeOnBurner(pot);

 sleep(minutes);

 removeFromBurner(pot);

 m.lock();
 burnersAvailable++;

 m.unlock();
 return true;

 }

 m.unlock();
 return false;
}

(9b) (4 points). We can solve this issue with locks (std::mutex). Assuming that there is a
preexisting mutex called m, add lock and unlock calls (ie m.lock() and m.unlock()) to the
function above to make the function completely thread-safe. Do not lock a larger section of code
than necessary, so as to allow parallelism when possible.
You cannot lock while the sleep() is happening otherwise only
one pot can boil at a time! Also must unlock before all returns.

(9a)

// Bad interleaving:

if (burnersAvailable > 0) {

 burnersAvailable--;

... // burnersAvailable can go < 0
 // if original burnersAvailable
 // was 1.

// Data race: if one thread does
// burnersAvailable++ while the
// other does burnersAvailable-- or
// burnersAvailable++, or does the
// test for burnersAvailable > 0,
// then there may be corruption of
// the variable and/or the return.

