
 CSE 374 Final Exam 12/14/17

 Page 1 of 16

Name ________________________________ UW ID# _________________

There are 9 questions worth a total of 120 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed laptops, closed twitter, closed telepathy,
closed Facebook, etc.

If you have a question, please raise your hand and stay seated.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 120

1. ______ / 13

2. ______ / 16

3. ______ / 10

4. ______ / 20

5. ______ / 20

6. ______ / 12

7. ______ / 14

8. ______ / 9

9. ______ / 6

Note: Please write your answers only on the specified pages. Pages with only
questions and explanations will not be scanned for grading, and you should feel free
to remove them from the exam.

 CSE 374 Final Exam 12/14/17

 Page 2 of 16

Question 1. (13 points) Preprocessor. Consider the following program:

#include <stdio.h>
#define SQUARE(x) x * x
#define DOUBLE(x) 2 * x
int main() {
 int a = 2;
 int b = 3;
 int x = DOUBLE(a);
 int y = SQUARE(a+b);
 int z = DOUBLE(1+a+b);
 printf("x = %d, y = %d, z = %d\n", x, y, z);
 return 0;
}

(a) (10 points) Show the output produced by the preprocessor (cpp –P) when it reads
and processes this C program, which is the first step that happens before the compiler can
translate the code to generate a .o file. Ignore the #include <stdio.h> line – it
will insert the declarations from stdio.h and do nothing further. Otherwise, your
answer should show all of the output from the preprocessor. There are no preprocessor
errors in this program, and the resulting program compiles and executes without errors.

(b) (3 points) Fill in the blanks to show the numbers printed when this program is
executed:

 x = ________, y = ________, z = ________

 CSE 374 Final Exam 12/14/17

 Page 3 of 16

Question 2. (16 points) Making things. Suppose we have a project with multiple source
files that have the #include dependencies shown below.

* foo.h *

#ifndef _FOO_H_
#define _FOO_H_
...
#endif

* foo.c *

#include "foo.h"
...

* main.c *

#include "foo.h"
#include "bar.h"

int main() {
 ...
}

* bar.h *

#ifndef _BAR_H_
#define _BAR_H_

#include "foo.h"
...
#endif

* bar.c *

#include "bar.h"
...

If we’re being lazy, we could create an executable program from these files by executing
the command gcc -Wall -g -std=c11 -o main *.c.

On the next page, create a Makefile that builds an executable program named main
from these files as done by the gcc command above, but only recompiles and relinks
the minimum number of files needed after any changes are made to the source files.
Your answer should be done in two steps:

• First, construct the dependency graph that shows the dependencies between the
source files, the compiled .o files, and the final executable file main that is
created by linking the .o files.

• After drawing the dependency graph, write the final Makefile.

Write your answers on the next page. You should remove this page from the exam. Do
not write on this page. It will not be scanned for grading.

 CSE 374 Final Exam 12/14/17

 Page 4 of 16

Question 2. (cont.) (a) (8 points) Draw the dependency graph (diagram) showing
dependencies between the files on the previous page, the .o files created by compiling
the .c files, and the final executable program main.

(b) (8 points) Give the contents of a Makefile that will build the program as described
by the dependency diagram above. The default target that is built if we just type make
with no arguments should be the executable program main.

 CSE 374 Final Exam 12/14/17

 Page 5 of 16

Question 3. (10 points) git. Two of our programmers, Bart and Lisa, are using git to
manage a project. Both of them have been working on various parts of the code. Bart
has made some changes, tested them, and now wants to commit and push his changes to
the shared repository. A transcript of the terminal session follows. Answer questions
about it below.

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)
 modified: main.c
no changes added to commit (use "git add" and/or "git commit -a")
$ git add main.c
$ git commit -m "change output message"
[master 2413774] change output message
 1 file changed, 1 insertion(+), 1 deletion(-)
$ git push
To gitlab.cs.washington.edu:cse374-17au-students/cse374-17au-xa.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'git@gitlab.cs.washington.edu:cse374-17au-
students/cse374-17au-xa.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.
$

(a) (2 points) Something went wrong when Bart tried to do the git push. What is the
explanation of the problem? (Don’t just repeat the message printed above – explain what
we can actually conclude from the message about the underlying cause of the failure or
what the likely conflict is, etc., but be brief.)

(continued on next page)

 CSE 374 Final Exam 12/14/17

 Page 6 of 16

Question 3. (cont.) Not quite sure what to do next, Bart tries entering the git pull
command suggested in the original error message. Here is the output from that:

$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From gitlab.cs.washington.edu:cse374-17au-students/cse374-17au-xa
 7809b75..226da1e master -> origin/master
Auto-merging main.c
CONFLICT (content): Merge conflict in main.c
Automatic merge failed; fix conflicts and then commit the result.
$

(b) (8 points) Well, that didn’t quite work, apparently. Explain specifically what the
problem is now and then give a complete list of the specific steps that Bart needs to do to
clear up the problem(s) and successfully push changes to the git repository.

 CSE 374 Final Exam 12/14/17

 Page 7 of 16

Question 4. (20 points) Another trieing question. In HW5 we used a trie to store the
words in a dictionary based on the digit sequences that encoded the words. There are
several possible ways to represent trie nodes, but for this problem, assume that a node is
defined as follows:

struct tnode { // one node in the trie:
 char * word; // C-string if this node has a
 // word attached, otherwise NULL
 struct tnode *next[10]; // Subtrees. next[2] to next[9]
 // are subtrees for digits 2-9;
 // next[0] is the synonym ('#') link.
}; // For 0<=i<10, next[i]==NULL if
 // next[i] is an empty subtree.

For this problem, write a function that produces an exact copy of a trie. In other words,
clone(r) should return a pointer to a new trie that is an exact copy of the original one,
including copies of all of the nodes and strings in the original.

You should assume that all necessary header files have already been #included and
you do not need to add any #includes. You may assume that malloc always
succeeds and you do not need to check the result for NULL.

Hints: recursion really, really, really is your friend. The clone of an empty trie is empty.

A bit of (maybe) useful reference information about strings and memory:

Some string library functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst,
adding ‘\0’s at end if fewer than n characters in src so that n chars. are copied.

• char* strcpy(dest, src)
• char* strncat(dest, src, n), append up to n characters from src to the end of

dest, put ‘\0’ at end, either copy from src or added if no ‘\0’ in copied part of src.
• char* strcat(dest, src)
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length)
• int strlen(s)

Basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

Write your answer on the next page. You should remove this page from the exam. Do
not write on this page. It will not be scanned for grading.

 CSE 374 Final Exam 12/14/17

 Page 8 of 16

Question 4. Write your implementation of the trie clone function below. Additional
space is provided on the next page if you need it.

// Return a pointer to the root of a new trie that is an
// exact copy of the trie with root r. If r is NULL
// (i.e., empty), return NULL.
struct tnode *clone(struct tnode *r) {

}

 CSE 374 Final Exam 12/14/17

 Page 9 of 16

Question 4. (cont.) Additional space for your answer, if needed.

 CSE 374 Final Exam 12/14/17

 Page 10 of 16

Question 5. (20 points) A bit of memory management. Recall from HW6 that we can
represent the free list for the getmem/freemem storage allocator as a linked list of blocks.
The beginning of each block is described by the following C struct:

struct free_node { // node on free list:
 uintptr_t size; // number of bytes in this
 // block, not including the
 // size of this header
 struct free_node *next; // next block on free list or
 // NULL if none
};

(We will assume that the size in the free_node struct includes only the number of
bytes of data following the header and does not include the header, although this won’t
really matter for this problem.)

One of the operations needed in the memory manager is to insert a new block in the free
list in the correct position so that the blocks on the free list have ascending memory
addresses. On the next page, implement the function insert_free_node that does
this. You should assume that there is a global pointer variable that stores the address of
the first block on the free list, and your code can access that variable without further
declaration:

struct free_node *free_list; // free list blocks; NULL
 // if free_list is empty

For full credit, your solution should not need to traverse the free list more than once (i.e.,
it should work in a single pass, not multiple passes over the list).

Simplifying assumptions: your code only needs to insert the block in the list. It does not
need to detect adjacent blocks or combine blocks.

You can assume that the new block being inserted is not currently on the free list and
does not overlap any blocks already on the free list.

You should assume that all necessary header files have already been #included and
you do not need to add any #includes.

Write your answer on the next page. You should remove this page from the exam. Do
not write on this page. It will not be scanned for grading.

(continued on next page)

 CSE 374 Final Exam 12/14/17

 Page 11 of 16

Question 5. (cont.) Write your implementation of insert_free_node here. The
heading of the function is written for you.

// Insert node b in correct place on the global free_list.
// Nodes are stored in order based on node addresses.
void insert_free_node(struct free_node *b) {

}

 CSE 374 Final Exam 12/14/17

 Page 12 of 16

Question 6. (12 points) Testing. Describe three different black-box tests for the
insert_free_node function from the previous problem. For full credit, the three
tests must verify different things about the implementation, and must describe the
specific input or setup for the test and the expected results. In your description of test
inputs and outputs you can specify that a particular block is located at a particular address
or that the free list contains blocks located at specific addresses, without having to
explain how those blocks would be created at those specific addresses. Also, to simplify
the question, you do not need to worry about whether block addresses are multiples of 16.

(a) Test input/setup:

Expected result:

(b) Test input/setup:

Expected result:

(c) Test input/setup:

Expected result:

 CSE 374 Final Exam 12/14/17

 Page 13 of 16

Question 7. (14 points) C++. To explore a bit more C++, we’ve designed a simple class
to represent complex numbers. A complex number is represented by a pair of doubles,
holding the real and imaginary parts of the number respectively. (Don’t worry if you
aren’t familiar with complex numbers – this is a programming problem and all the details
needed are described below.)

The class declaration in file Complex.h looks like this:

#ifndef _COMPLEX_H_
#define _COMPLEX_H_

class Complex {
public:
 // Construct Complex x+y*i
 Complex(double x, double y);

 // accessors – return parts of this Complex number
 double real() const;
 double imag() const;

 // addition: return the value this + other
 Complex plus(Complex other) const;

private:
 // Representation of a Complex number: re+im*i
 double re; // real part
 double im; // imaginary part
};

#endif // _COMPLEX_H_

On the next page, give implementations for the four functions (constructor, real and
imag accessor functions, and plus) that are declared but not implemented above.

Reminder: The sum of two complex numbers (a+bi)+(c+di) is the complex number
(a+c)+(b+d)i – in other words, simply add the real and imaginary parts together to get the
real and imaginary parts of the result.

You should remove this page from the exam. Do not write on this page. It will not be
scanned for grading.

 CSE 374 Final Exam 12/14/17

 Page 14 of 16

Question 7. (cont.) Provide your implementation of the Complex class declared on the
previous page as it would be written in the implementation file Complex.cc.

#include "Complex.h"

// write your implementation of class Complex below.

 CSE 374 Final Exam 12/14/17

 Page 15 of 16

Question 8. (9 points) Concurrency. Consider the following code, which maintains a list
of integer values.

struct int_node { // nodes for an integer list:
 int val; // value in this node
 struct int_node *next; // next node or NULL if none
};

struct int_node *list = NULL; // list of nodes; NULL if empty

// Insert new_node on the front of the list

void add_node(struct int_node *new_node) {

 new_node->next = list;

 list = new_node;

}
// remove first list node and return it; NULL if list empty

struct int_node *delete_node() {

 struct int_node *temp = list;

 if (list == NULL) return NULL;

 list = list->next;

 return temp;

}

Suppose we use this code in a program with two threads t1 and t2, both of which add and
delete nodes from the (shared) list by calling add_node and delete_node.

(a) (5 points) This code is not thread-safe. Give a brief explanation of what can go wrong
if the two threads are using these functions concurrently. (If it matters, assume that no
other code modifies the list nodes or otherwise changes the data contained in the list.)

(b) (4 points) Good news! It turns out that the C standards committee has added an
atomic statement to C, as described in lecture. A sequence of statements s1; …; sn; will
be executed atomically if we surround them with atomic as follows: atomic{s1; …; sn}.

Add atomic{ … } statements to the above code so the resulting code is thread-safe.

 CSE 374 Final Exam 12/14/17

 Page 16 of 16

Question 9. (6 points) Concurrency and locks. We have a program with three
concurrent threads and three shared objects X, Y, and Z. Here are two possible locking
strategies for handling access to the shared objects:

Strategy 1 Strategy 2

Thread 1 Thread 1
Acquire lock for X Acquire lock for X
Acquire lock for Y Acquire lock for Y
Modify X and Y Modify X and Y
Release lock on Y Release lock on Y
Release lock on X Release lock on X

Thread 2 Thread 2
Acquire lock for Z Acquire lock for X
Acquire lock for X Acquire lock for Z
Modify Z and X Modify Z and X
Release lock on X Release lock on Z
Release lock on Z Release lock on X

Thread 3 Thread 3
Acquire lock for Y Acquire lock for Y
Acquire lock for Z Acquire lock for Z
Modify Y and Z Modify Y and Z
Release lock on Z Release lock on Z
Release lock on Y Release lock on Y

Which one of these strategies can cause a deadlock? Show a sequence of operations that
lead to the deadlock, and explain why the other strategy will never cause a deadlock.

Have a great winter break! The CSE 374 Staff

