Name:

CSE 374 Final Exam, March 20, 2014

Write your name in the space provided above.
Do not write your ID number or any other confidential information on this page.

Please wait to turn the page until everyone is told to begin.

While you are waiting, please read the following information:

There are 9 questions on 13 pages worth a total of 100 points. Please budget your
time so you get to all the questions. Keep your answers brief and to the point.

Some question pages may be detached for your convenience (a separate page is
provided for your answer in these cases). A stapler is available at the instructor
podium if your entire exam falls apart.

The exam is closed book, closed notes, closed electronics, closed Internet, closed
neighbor, closed telepathy, etc., with the exception of the one instructor-provided
double-sided page of notes.

Many of the questions have short solutions, even if the question is somewhat long.
Don'’t be alarmed.

If you don’t remember the exact syntax of some command or the format of a
command’s output, make the best attempt you can. We will make allowances when

grading. Write legibly.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

1/13

Score:

1 /8
2. / 14
3 /8
4, /12
5 /8
6 /8
7. /18
8. /12
0. /12

CSE 374 Final Exam, March 20, 2014

/100

debugging, gdb
(short answer)

automating compilation, dependencies, make
(draw a graph, write amakefile)

version control, svn
(matching)

C programming, pointers vs. what’s being pointed at
(write a small amount of C code)

C program output (pointers as parameters)
(similar to midterm, what does this program output?)

C program evaluation, linked lists and strings, free
(matching)

C programming, linked lists and strings, malloc
(write C code)

C programming, memory management
(write C code)

C programming, memory management
(write C code)

2/13

CSE 374 Final Exam, March 20, 2014

Question 1. (8 points) (debugging, gdb)

You are trying to fix a C program that is crashing for some reason. You have narrowed the
problem down to a set of functions that implement a list of strings. The four functions
involved are:

init(); // must call first before any others
add(char *s); // add s to the list

delete(char *s); // delete s from the list if present
size(); // return number of strings in the list

The list package requires that the function init () be called before any of the other three
functions can be used successfully. Your guess is that somehow one of the other functions
is being called first, but your boss wants you to prove your guess is right before spending
any more time on the problem.

Explain how you would use a debugger like gdb to discover whether one of the other
functions is called before init (). You may not modify the source code (i.e., you can’t
insert print statements or anything like that - you have to work with the source code as it
exists); however, you may recompile existing code if needed.

3/13

CSE 374 Final Exam, March 20, 2014

Question 2. (14 points) (automating compilation, dependencies, make)

Suppose we have the following collection of C header and implementation files:

thingie.h thingie.c
#ifndef THINGIE_H #include “thingie.h”
#define THINGIE H
#eﬁdif

doodad.c
doodad.h #include “doodad.h”
#ifndef DOODAD_H
#define DOODAD H
#endif whatsit.c

#include “thingie.h”
#include “doodad.h”

int main() {

}

These source files are to be used to build an executable program file named whatsit,
whose main function is in the source file whatsit . c and which uses all of the functions
defined in all of the above source files.

Answer the questions (2 parts) on the next page using the above information. (Suggestion:
sketch your answer to part (a) below before you make a clean copy of it on the next page.)

Please write your answer on the next page.

You may detach this page from the exam if that is convenient.

4/13

foo.c

foo.o

foo

CSE 374 Final Exam, March 20, 2014

Question 2. (continued)

Part (a) Recall that we can specify the dependencies between files in a program using a
graph, where there is an arrow drawn from each file name to the file(s) it depends on. For
example, the drawing to the left shows how we would diagram an executable program
named foo that depends on (is built from) foo. o, which in turn depends on foo.c.

In the space below, draw a graph (diagram) showing the dependencies between the
executable program whatsit and all of the source (. c), header (. h), and compiled (. 0)
files involved in building it, based on the file information given on the previous page.

Part (b) Write the contents of a Makefile whose default target builds the program
whatsit, and which only recompiles individual files as needed. Your Makefile should
reflect the dependency graph you drew in part (a). Compile with flags for all warnings and
for including debugging information to use with gdb.

5/13

CSE 374 Final Exam, March 20, 2014

Question 3. (8 points) (version control, svn)

Match each svn command with the best description

A. Update Performed once by one developer to set up the project in the
repository initially

B. Add/Delete Uploads changed or new files to the repository, merging changes
into the repository if needed

C. Checkout Downloads changed or new files in a project to the local “working
directory”, merging changes into local files if needed

D. Commit Schedules files to be included or removed from the project
repository

E. Import Sets up a local “working directory” and downloads an entire copy
of the project from the repository to it

Question 4. (12 points) (C programming, pointers vs. what’s being pointed at)
Write a C function are_same that has two parameters of type int* and returns:

¢ 0 if the two parameters point to locations holding different int values,
* 1 if the two parameters point to different locations holding the same int values,
e 2 ifthe two parameters point to the same location

int are same(int *x, int *y) {

6/13

CSE 374 Final Exam, March 20, 2014

Question 5. (8 points) (C program output, pointers as parameters)
Consider the following C program:
#include <stdio.h>

void mysterious(int *a, int *b, int *c) {
*a = *c;
*b = *b + *a;

*C = *g - *b;

int main()

~

int w = 5;

int x = 1;

int vy = 3;

int z = 2;

mysterious(&x, &y, &w);

printf(“%d %d %d %d\n”, w, X, y, 2);
mysterious(&w, &w, &z);

printf(“%d %d %d %d\n”, w, X, y, 2);

return O0;

What output does this program produce when it is executed? (It does execute
successfully.) It may be useful to draw diagrams showing variables and pointers to help
answer the question and help us award partial credit if needed.

7/13

CSE 374 Final Exam, March 20, 2014

Question 6. (8 points) (C programming, linked lists and strings, free)
Consider the following definition of a node of a linked list of nodes containing strings in C:
struct node {

char *s;

struct node *next;

}

and three functions that allegedly deallocate (f£ree) the space occupied by a list:

void free list 1l(struct node *1lst) ({
if (lst == NULL)
return;
free(lst);

void free list 2(struct node *1lst) ({
if (lst == NULL)
return;
free(lst->s);

free list 2(lst->next);
free(lst);

void free list 3(struct node *1lst) ({
if (lst == NULL)
return;
free(lst);

free(lst->s);
free list 3(lst->next);

In the box provided next to each free list # function above, write zero or more of the
following letters (A, B) if the corresponding description provided below matches what is
going on in that function.

A. Causes a memory leak because it only frees the first node struct in the list,
without freeing any of the strings or remaining nodes.

B. Uses a pointer to a struct after it has already been freed, which is considered a
dangling pointer. Attempts to access other pointers inside the freed struct.

8/13

CSE 374 Final Exam, March 20, 2014

Question 7. (18 points) (C programming, linked lists and strings, malloc)

A classic data structure is a linked list. For this problem, we will work with a linked list
whose nodes contain strings, or, more precisely, the data in each node is a pointer to a
‘\0 ' -terminated C string. Assume a list node is defined as follows:

struct list node ({
char *str;
struct list node *next;

}i

You may assume the list does not contain any duplicates and the strings are not
sorted in any particular order. You are to write code to insert a new string s into a
linked list. You may insert the copy of s anywhere in the list if you need to add it. The list
might be empty initially, in which case you should create a single node pointing to a copy of
s and return a pointer to that new node as a result. If the string s already appears in the
list, the function should return a pointer to the original, unmodified list.

Example: The following statement would add “xyzzy"” to the list whose first node is
words if “xyzzy” isnotalready in the list;

words = insert(“xyzzy”, words);

Write your code in two steps in Parts (a) and (b) below and on the next page:

Part (a) (8 points) Complete the definition of the following function new node so that it
returns a pointer to a newly heap-allocated 1ist node that references a newly heap-

allocated copy of the given string. Some useful #includes are provided for you.

#include <string.h>
#include <stdlib.h>

struct list node *new node(char *s) ({

9/13

CSE 374 Final Exam, March 20, 2014

Question 7 (continued).

Part (b) (10 points) Now, implement the following function to insert a new heap-
allocated copy of a string s into linked list 1. (If a new node is needed to hold s, use the
new_node function from part (a) to create it.) If string s already occurs in the linked
list, the function should not change the list. The function should return a pointer to the
head of the (possibly modified) list 1. You may assume that all strings are properly \ 0-
terminated and you do not need to worry about overrun errors (i.e., it's ok to use strcmp
instead of strncmp, etc.).

/* insert a copy of string s into the linked list 1 */
/* and return a pointer to 1. If s already appears in 1, */
/* do not change 1 and just return a pointer to it. */

struct list node *insert(char *s, struct list node *1) {

10/ 13

CSE 374 Final Exam, March 20, 2014

Question 8. (12 points) (C programming, memory management)

For this problem, assume that the following struct defines the layout of the header part
of each free list node (note that the size field here is slightly different from HW6):

struct free node {
uintptr t size; // number of bytes in this node,
// including this header

struct free node *next; // next node on the free list,
// or NULL if no more nodes

}i

Assume as in HW6 we are dealing with sizes in multiples of 16 bytes. In a properly formed
free list, successive nodes should occupy increasing memory addresses. If some node on
the list has a next pointer that is not NULL and contains a lower memory address, then
something is wrong with the list.

Complete the definition of function 1looks ok on the next page so that it returns true (1) if

the successive nodes on list p are stored at increasing addresses, and returns false (0) if
some node has a successor with an address that is less than the address of the node itself.

Use the following diagram of a block on the free list for Questions 8 and 9:

p size } 8

*next } 8

|

16 bytes

" size
16 bytes

ﬂ-—-l—1—-

|
[
i
I
1
1
i
:-;

Please write your answer on the next page.

You may detach this page from the exam if that is convenient.

11/13

CSE 374 Final Exam, March 20, 2014

Question 8 (continued). Free list node definition repeated for reference:
struct free node {
uintptr t size; // number of bytes in this node,

// including this header

struct free node *next; // next node on the free list,
// or NULL if no more nodes

}i
Write your code for this function below:

/* return true (1) if the node addresses on list p are */
/* strictly increasing, otherwise return false (0) */

int looks ok(struct free node *p) {

12 /13

CSE 374 Final Exam, March 20, 2014

Question 9. (12 points) (C programming, memory management)

In this problem, we would like to write a function to help us analyze the memory manager
free list. You should assume that the following struct gives the layout of the header part
of each free list node (note that the size field here is slightly different from HW6):

struct free node {
uintptr t size; // number of bytes in this node,
// including this header

struct free node *next; // next node on the free list,
// or NULL if no more nodes

}i

Complete the following function so it scans the entire free list and prints the maximum
address occupied by any part of any block on the free list. (Note that the maximum
address occupied by a block is not the address of the header node or the beginning / ending
boundary of the block.) For this problem, assume that the free list blocks might not be
sorted properly, so the maximum address might be found in a block anywhere on the list.
If the free list is empty, the function should print 0x00000000 for the maximum address.

Hint: “3p” is a suitable printf format string to printauintptr t value using 8 hex
digits with “0x” in front.

void print max address(struct free node *free list) {

13 /13

