CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 25; Undefined Behavior

t's my Birthday!

* |I'm super excited to tell you about one of my
favorite topics today

* | brought you brownies, eat them

* Contains: flour, sugar, eggs, vanilla, chocolate,
butter, pecans (in some)

Administrivia

HW6 turned in last night, or using late days
HWY7 out today (demo at end of class)

HWS grading is almost done, we'll grade HWG6 as
fast as we can

Final review session 2-4pm on Tues, June 6 in CSE
403

Compilation

* |In the beginning, the compiler was just a simple,
straightforward translator

* As the age old story goes, we wanted our code to
run faster

Example

1t (0)

{ do something(); } int x=0;
int x=0; printf (“sd\n”, x);

printf (“sd\n”, x);

Compiler Optimization

e Your code doesn't take a straight trip down
* All sorts of manipulation on the way down

o Compiler must maintain meaning of the program

Compiler’'s Promise

I solemnly swear that the meaning of the
output program will match the meaning of the
input program *

*As long as the input program has meaning

What if program is weird”

1nt x=0;

Overflow

+

What if program is weird”

1nt x=0;

What if program is weird”

while (true) {

J

using clang on macOS, optimized with -O3

Undefined Behavior

 Compiler doesn’t have to maintain meaning if code
doesn’t have meaning

* How to get faster code: declare all sorts of things to
not have meaning, then allowed to do anything to
them

* C may have taken this too far

Undefined Behavior

A.1int yv = 0;
B.1nt y = 5;

int v = x/0; ? C.int v = -1;
D. format drive();

E. launch missiles();

Compiler’'s Promise

I solemnly swear that the meaning of the
output program will match the meaning of the
input program*

If the input has no meaning,
the compiler can do anything!

*As long as the input program has meaning

Does this happen In
practice”

YES

Undefined Behavior:
What Happened to My Code?
Wang et. al, APSys ‘12

Signed Overtlow

* Signed overflow is undefined in C

* \When you have the largest signed number, and
you add more to it, the result is undefined
according to the C language specification

* This allows for a lot of cool loop optimizations, but
also puts us in awkward situations

How to test for overtlow?

e Supposex>0andy >0

e |t x+vy IS negative, then overflow occurred

* Thisis problematic...

Example

int do fallocate(..,loff t offset, loff t len)
{

struct 1node *inode = ...;
1f (offset < 0 || len <= 0)
return —-EINVAL;
/* Check for wrap through zero too */
1f ((offset + len > 1node->1 sb-
>s maxbytes) || (offset + len < 0))
return —-EFBIG;

fs/open.c
Linux Kernel

Example

int do fallocate(..,loff t offset, loff t len)
{

struct 1node *inode = ...;
1f (offset < 0 || len <= 0)
return —-EINVAL;
/* Check for wrap through zero too */
1f ((offset + len > 1node->1 sb-
>s maxbytes) || (offset + len < 0))
return —-EFBIG;

fs/open.c
Linux Kernel

Division by O

* division by O in C is undefined behavior

* |f division by O ever occurs, entire program has no
meaning, and can be transformed into anything

* |n practice compilers generate nothing whenever
they can

Example

1f (msize == 0)
msize = 1 / msize; /* provoke a signal */

Result; Entire check removed

from the Linux Kernel:
ib/mpi/mpi-pow.c

Uninitialized Read

* In C, you can make up a variable without putting
something In it

* This variable is called “uninitialized”

* |t you read from it, that is undefined behavior

Uninitialized Read

* Thought: if there's nothing well defined in there,
maybe it's just "kinda random”

 We could use that, with some other stuff, to seed
our random number generator

Example

struct timeval tv;
unsigned long junk; /* XXX left uninitialized
on purpose */

gettimeofday (&tv, NULL) ;
srandom ((getpid() << 1lo6) © tv.tv sec
tv.tv usec © junk);

VAN

lib/libc/stdlib/rand.c in FreeBSD libc

Example

struct timeval tv;
unsigned long junk; /* XXX left uninitialized
on purpose */

gettimeofday (&tv, NULL) ;
srandom ((getpid() << 1lo6) © tv.tv sec
tv.tv usec © junk);

VAN

lib/libc/stdlib/rand.c in FreeBSD libc

How to solve?

we have bandaids not cures

many different compiler flags to disable
optimizations (-fwrapv gives meaning to signed
overflow)

flags not complete, even it they were wouldn'’t be
satistying

we need something better

