
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 25: Undefined Behavior

It’s my Birthday!

• I’m super excited to tell you about one of my
favorite topics today

• I brought you brownies, eat them

• Contains: flour, sugar, eggs, vanilla, chocolate,
butter, pecans (in some)

Administrivia
• HW6 turned in last night, or using late days

• HW7 out today (demo at end of class)

• HW5 grading is almost done, we’ll grade HW6 as
fast as we can

• Final review session 2-4pm on Tues, June 6 in CSE
403

Compilation

• In the beginning, the compiler was just a simple,
straightforward translator

• As the age old story goes, we wanted our code to
run faster

Prog Exec

Example

if (0)

 { do_something(); }

int x=0;

printf(“%d\n”, x);

int x=0;

printf(“%d\n”, x);

Compiler Optimization

• Your code doesn’t take a straight trip down

• All sorts of manipulation on the way down

• Compiler must maintain meaning of the program

Prog Exec

Compiler’s Promise

I solemnly swear that the meaning of the
output program will match the meaning of the
input program*

*As long as the input program has meaning

What if program is weird?
int x=0;
int y=0;
while (true) {
 y = x;
 x += 1;
 if (x <= y) {
 printf(“weird”);
 }
}

Overflow

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 01

+1

What if program is weird?
int x=0;
int y=0;
while (true) {
 y = x;
 x += 1;
 if (x <= y) {
 printf(“weird”);
 }
}

What if program is weird?

while (true) {
}

using clang on macOS, optimized with -O3

Undefined Behavior

• Compiler doesn’t have to maintain meaning if code
doesn’t have meaning

• How to get faster code: declare all sorts of things to
not have meaning, then allowed to do anything to
them

• C may have taken this too far

Undefined Behavior

int y = x/0;

A. int y = 0;

B. int y = 5;

C. int y = -1;

D. format_drive();

E. launch_missiles();

?

Compiler’s Promise

I solemnly swear that the meaning of the
output program will match the meaning of the
input program*

*As long as the input program has meaning

If the input has no meaning,
 the compiler can do anything!

Does this happen in
practice?

Undefined Behavior:
What Happened to My Code?

Wang et. al, APSys ‘12

YES

Signed Overflow

• Signed overflow is undefined in C

• When you have the largest signed number, and
you add more to it, the result is undefined
according to the C language specification

• This allows for a lot of cool loop optimizations, but
also puts us in awkward situations

How to test for overflow?

• Suppose x ≥ 0 and y > 0

• If x+y is negative, then overflow occurred

• This is problematic…

Example
int do_fallocate(…,loff_t offset, loff_t len)
{
 struct inode *inode = ...;
 if (offset < 0 || len <= 0)
 return -EINVAL;
 /* Check for wrap through zero too */
 if ((offset + len > inode->i_sb-
>s_maxbytes) || (offset + len < 0))
 return -EFBIG;
 ...
}

fs/open.c
Linux Kernel

Example
int do_fallocate(…,loff_t offset, loff_t len)
{
 struct inode *inode = ...;
 if (offset < 0 || len <= 0)
 return -EINVAL;
 /* Check for wrap through zero too */
 if ((offset + len > inode->i_sb-
>s_maxbytes) || (offset + len < 0))
 return -EFBIG;
 ...
}

fs/open.c
Linux Kernel

Division by 0

• division by 0 in C is undefined behavior

• If division by 0 ever occurs, entire program has no
meaning, and can be transformed into anything

• In practice compilers generate nothing whenever
they can

Example

if (msize == 0)
 msize = 1 / msize; /* provoke a signal */

from the Linux Kernel:
lib/mpi/mpi-pow.c

Result: Entire check removed

Uninitialized Read

• In C, you can make up a variable without putting
something in it

• This variable is called “uninitialized”

• If you read from it, that is undefined behavior

Uninitialized Read

• Thought: if there’s nothing well defined in there,
maybe it’s just “kinda random”

• We could use that, with some other stuff, to seed
our random number generator

Example
struct timeval tv;
unsigned long junk; /* XXX left uninitialized
 on purpose */

gettimeofday(&tv, NULL);
srandom((getpid() << 16) ^ tv.tv_sec ^
 tv.tv_usec ^ junk);

lib/libc/stdlib/rand.c in FreeBSD libc

Example
struct timeval tv;
unsigned long junk; /* XXX left uninitialized
 on purpose */

gettimeofday(&tv, NULL);
srandom((getpid() << 16) ^ tv.tv_sec ^
 tv.tv_usec ^ junk);

lib/libc/stdlib/rand.c in FreeBSD libc

How to solve?
• we have bandaids not cures

• many different compiler flags to disable
optimizations (-fwrapv gives meaning to signed
overflow)

• flags not complete, even if they were wouldn’t be
satisfying

• we need something better

