CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 24: Concurrency

Administrivia

omework 6 due Tomorrow (midnight)

* [ate days: only if both partners have them to use
Homework 7 out Friday

Final on Wed of Finals week

* When should review session be”

Extra Office Hours Today 3pm (CSE 218)

Concurrency

Computation where “multiple things

happen at the

same time” Is inherently more complicated than “one at

a time”
Entirely new kinds of bugs!
Two forms of concurrency:

* time-slicing: only one thing actually happening at a

time
* parallelism: use more than one C

PU at the same time

No problem unless ditferent compu

rations need to

communicate or use the same resources

Processes

Multiple processes run "at once”

Why? (Convenience, efficient use of resources,
responsiveness, performance, etc...)

No problem: address spaces separate

ney can communicate/share with files (and pipes)

NINQS can go wrong, €.g. a race condition
e echo "hi” > someFile
e foo="cat somefile’

The O/S provides synchronization mechanisms to avoid
this

Ihe old story

* We said a running Java or C program had code, heap,
global variables, a stack, and “where is execution right
now” (program counter)

e C, Java support parallelism similarly (other languages
can be different)

e one pile of code, globals, heap

o multiple “stack + program counter’s — called threads
e threads are run or pre-empted by a scheduler

* threads all share the same memory

e Various synchronization mechanisms control when
threads run

e “don’t run until I'm done with this”

Threads in C/Java

C: the POSIX Threads (pthreads) library
e #include <pthread.h>
* pass -Ipthread to gcc (when linking)

* pthread_create takes a function pointer and an
argument for it, runs as a separate thread

Java: bullt into the language

* Subclass java.lang.Thread, and override the run
method

 Create a Thread object and call its start method
* Any object can “be synchronized on” (later today)

Why??

* Convenient structure of code
* failure isolation
e fairness
* Performance
* take advantage of multiple cores

* hide I/O latency

Simple Synchronization

It one thread did nothing of interest to any other
thread, why bother running?

Threads must communicate and coordinate

e Use results from other threads, and coordinate
access to shared resources

Simplest ways to not mess each other up:
 Don’t access same memory (complete isolation)

 Don’t write to shared memory (write isolation)

Next simplest: One thread doesn’t run until/unless
another is done

Using Parallel Threads

 Common pattern for expensive computations

* split the work up, give each piece to a thread
(fork)

e walit until all are done, then combine answers
(Join)
 Jo avolid bottlenecks, each thread should have
about the same amount of work

* Performance will always be less than perfect
speedup

| ess Structure

* Often you have a bunch of threads running at once and
they might need the same mutable (writable) memory at
the same time but probably not

e Want to be correct, but not sacrifice parallelism
 Example: bunch of threads processing bank transactions
e withdraw, deposit, transfer, currentBalance, etc...
* unlikely two will overlap, but there's a chance

e very important that answer is correct when they overlap

lThe issue

struct Acct {int balance; /*etc..*/ };
int withdraw(struct Acct* a, 1nt amt) {
1f (a->balance < amt)
return FAIL,;
a—->pbalance -= amt;
return SUCCESS;

}
* [his code Is correct in a seguential program

* |t may have a race condition in a concurrent
program, allowing for a negative balance

* Discovering this bug with testing is very hard

atomic

 Program construct which indicates “all at once”

* Everything in an atomic block must appear to any other
threads as having not yet started, or having already finished
int withdraw(struct Acct* a, 1nt amt) {
atomic {
1f (a->balance < amt)
return FAIL;
a->balance —-= amt;

}
return SUCCESS;

J

 Don't just wrap your whole program in an atomic, then just
Ike running sequentially

Critical Section

* The part of your program that would have races it
not synchronized properly is the critical section

* You must make it the right size! (this is hard)

* Joo big: program runs sequentially, no
parallelism

* Joo small: program has races, Is incorrect

So far

 Shared memory concurrency where multiple
threads might access the same mutable data at the

same time is tricky
e |t's worse because atomic isn’t in C or Java

* Instead, programmers must use locks (or other
mechanisms) which are lower level and harder to

use

 Misuse of locks will violate the “all at once”
property

* Can also lead to bugs we haven'’t seen yet

| ock Basics

 Alock is acquired and released by a thread
* At most one thread "holds it” at any moment

* Acquiring it "blocks” until the current holder
releases it

 Many threads might be waiting, will only go to
one at a time

* |Lock iImplementor avoids race conditions

e o keep two things from happening at the same
time, surround them with a lock-acquire/lock-
release

| ocks In C/Java

C: Need to initialize and destroy mutexes (i.e. locks)

* An initialized (pointer to a) mutex can be locked
or unlocked via library function calls

Java: A synchronized statement is an acquire/release
* Any object can serve as a lock

* Lock is released on any control transter out of the
synchronized block

* “Synchronized methods” just save keystrokes

Choosing how to lock

 Now we know what locks are (how to make them, what
acquire/release means), but programming with the m
correctly and efficiently is difficult

e As before, if critical sections aren't the right size, it's
not great

* Now, if two “synchronized blocks” grab ditterent locks,
they can both run at the same time (even if they
access the same memory)

e Also, a lock-acquire blocks until a lock is available,
and only the current holder can release

Object a;

oviect b; Deadlock

vold ml () { vold mZ2 ({
synchronized a { Synchronized b {
synchronized b { synchronized a {

J J
J J

J J

e A cycle of threads waiting on locks means none will
ever run again

 Avoidance: All code acquires locks in the same
order (very hard to do). Ad hock: Don’t hold onto
locks too long or while calling into unknown code

Best Practices

* Any one of the following will avoid races
 Keep data thread local
 Keep data read-only
* Use locks consistently (lock A corresponds to
some data, all accesses to that data are locked
with that lock)
* Use partial order of locks to avoid deadlock
(simpler: only ever have one lock at a time)
* These are tough, but what you have to do

* One lock for everything satisfies above, but is
inefficient

|_ocking Granularity

How much data should one lock guard?
* |n Java the suggested answer is obvious: one object
* In C you get to pick

Coarser granularity: less likely to deadlock, can
improve performance (lock acquire is expensive)

Finer granularity: allows for more parallelism, thus can
improve performance

Bank Accounts

* |f we gave each account its own lock, how would
we write our transfer method?

* Need to lock both accounts, make sure both are
updated atomically, want to make sure there’'s no
deadlock

t's actually a lot worse...

* You would naturally assume that what we just
discussed is as bad as it gets

* Turns out that on the trip from C code to executable
iInstructions, compilers will re-order memory accesses.
Thread on right might have assertion failure.

initially: data = 0, flag = false

data = 42; while (!flag) {}
flag = true; assert (data==42) ;

* To disallow reordering, use lock acquire (compiler will
not reorder across lock acquire), or use volatile (for
experts only, not this class)

Conclusion

e Threads make a lot of otherwise-correct
approaches incorrect

* writing “thread-safe” libraries is hard

* Use an expert implementation if you can: e.g.
Java’s ConcurrentHashMap and others

* Threads are increasingly important for efficient use
of todays computers

* Locks with shared memory Is just one common
approach

