
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 24: Concurrency

Administrivia
• Homework 6 due Tomorrow (midnight)

• Late days: only if both partners have them to use

• Homework 7 out Friday

• Final on Wed of Finals week

• When should review session be?

• Extra Office Hours Today 3pm (CSE 218)

Concurrency
• Computation where “multiple things happen at the

same time” is inherently more complicated than “one at
a time”

• Entirely new kinds of bugs!
• Two forms of concurrency:

• time-slicing: only one thing actually happening at a
time

• parallelism: use more than one CPU at the same time
• No problem unless different computations need to

communicate or use the same resources

Processes
• Multiple processes run “at once”
• Why? (Convenience, efficient use of resources,

responsiveness, performance, etc…)
• No problem: address spaces separate
• They can communicate/share with files (and pipes)
• Things can go wrong, e.g. a race condition

• echo “hi” > someFile
• foo=`cat somefile`

• The O/S provides synchronization mechanisms to avoid
this

The old story
• We said a running Java or C program had code, heap,

global variables, a stack, and “where is execution right
now” (program counter)

• C, Java support parallelism similarly (other languages
can be different)
• one pile of code, globals, heap
• multiple “stack + program counter”s — called threads
• threads are run or pre-empted by a scheduler
• threads all share the same memory

• Various synchronization mechanisms control when
threads run
• “don’t run until I’m done with this”

Threads in C/Java
C: the POSIX Threads (pthreads) library

• #include <pthread.h>
• pass -lpthread to gcc (when linking)
• pthread_create takes a function pointer and an

argument for it, runs as a separate thread
Java: built into the language

• Subclass java.lang.Thread, and override the run
method

• Create a Thread object and call its start method
• Any object can “be synchronized on” (later today)

Why?
• Convenient structure of code

• failure isolation

• fairness

• Performance

• take advantage of multiple cores

• hide I/O latency

Simple Synchronization
• If one thread did nothing of interest to any other

thread, why bother running?
• Threads must communicate and coordinate

• Use results from other threads, and coordinate
access to shared resources

• Simplest ways to not mess each other up:
• Don’t access same memory (complete isolation)
• Don’t write to shared memory (write isolation)

• Next simplest: One thread doesn’t run until/unless
another is done

Using Parallel Threads
• Common pattern for expensive computations

• split the work up, give each piece to a thread
(fork)

• wait until all are done, then combine answers
(join)

• To avoid bottlenecks, each thread should have
about the same amount of work
• Performance will always be less than perfect

speedup

Less Structure
• Often you have a bunch of threads running at once and

they might need the same mutable (writable) memory at
the same time but probably not

• Want to be correct, but not sacrifice parallelism

• Example: bunch of threads processing bank transactions

• withdraw, deposit, transfer, currentBalance, etc…

• unlikely two will overlap, but there’s a chance

• very important that answer is correct when they overlap

The issue
struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {
 if (a->balance < amt)
 return FAIL;
 a->balance -= amt;
 return SUCCESS;
}

• This code is correct in a sequential program
• It may have a race condition in a concurrent

program, allowing for a negative balance
• Discovering this bug with testing is very hard

atomic
• Program construct which indicates “all at once”
• Everything in an atomic block must appear to any other

threads as having not yet started, or having already finished
int withdraw(struct Acct* a, int amt) {
 atomic {
 if (a->balance < amt)
 return FAIL;
 a->balance -= amt;
 }
 return SUCCESS;
}

• Don’t just wrap your whole program in an atomic, then just
like running sequentially

Critical Section
• The part of your program that would have races if

not synchronized properly is the critical section

• You must make it the right size! (this is hard)

• Too big: program runs sequentially, no
parallelism

• Too small: program has races, is incorrect

So far
• Shared memory concurrency where multiple

threads might access the same mutable data at the
same time is tricky

• It’s worse because atomic isn’t in C or Java
• Instead, programmers must use locks (or other

mechanisms) which are lower level and harder to
use
• Misuse of locks will violate the “all at once”

property
• Can also lead to bugs we haven’t seen yet

Lock Basics
• A lock is acquired and released by a thread

• At most one thread “holds it” at any moment
• Acquiring it “blocks” until the current holder

releases it
• Many threads might be waiting, will only go to

one at a time
• Lock implementor avoids race conditions

• To keep two things from happening at the same
time, surround them with a lock-acquire/lock-
release

Locks in C/Java
C: Need to initialize and destroy mutexes (i.e. locks)

• An initialized (pointer to a) mutex can be locked
or unlocked via library function calls

Java: A synchronized statement is an acquire/release

• Any object can serve as a lock

• Lock is released on any control transfer out of the
synchronized block

• “Synchronized methods” just save keystrokes

Choosing how to lock
• Now we know what locks are (how to make them, what

acquire/release means), but programming with the m
correctly and efficiently is difficult

• As before, if critical sections aren’t the right size, it’s
not great

• Now, if two “synchronized blocks” grab different locks,
they can both run at the same time (even if they
access the same memory)

• Also, a lock-acquire blocks until a lock is available,
and only the current holder can release

Deadlock

• A cycle of threads waiting on locks means none will
ever run again

• Avoidance: All code acquires locks in the same
order (very hard to do). Ad hock: Don’t hold onto
locks too long or while calling into unknown code

Object a;
Object b;

void m1() {
 synchronized a {
 synchronized b {
 }
 }
}

void m2() {
 synchronized b {
 synchronized a {
 }
 }
}

Best Practices
• Any one of the following will avoid races

• Keep data thread local
• Keep data read-only
• Use locks consistently (lock A corresponds to

some data, all accesses to that data are locked
with that lock)

• Use partial order of locks to avoid deadlock
(simpler: only ever have one lock at a time)

• These are tough, but what you have to do
• One lock for everything satisfies above, but is

inefficient

Locking Granularity
• How much data should one lock guard?

• In Java the suggested answer is obvious: one object

• In C you get to pick

• Coarser granularity: less likely to deadlock, can
improve performance (lock acquire is expensive)

• Finer granularity: allows for more parallelism, thus can
improve performance

Bank Accounts

• If we gave each account its own lock, how would
we write our transfer method?

• Need to lock both accounts, make sure both are
updated atomically, want to make sure there’s no
deadlock

It’s actually a lot worse…
• You would naturally assume that what we just

discussed is as bad as it gets
• Turns out that on the trip from C code to executable

instructions, compilers will re-order memory accesses.
Thread on right might have assertion failure.

• To disallow reordering, use lock acquire (compiler will
not reorder across lock acquire), or use volatile (for
experts only, not this class)

data = 42;
flag = true;

while (!flag) {}
assert(data==42);

initially: data = 0, flag = false

Conclusion
• Threads make a lot of otherwise-correct

approaches incorrect
• writing “thread-safe” libraries is hard
• use an expert implementation if you can: e.g.

Java’s ConcurrentHashMap and others
• Threads are increasingly important for efficient use

of todays computers
• Locks with shared memory is just one common

approach

