
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 23: C++: Vtables

Administrivia
• Homework 6 is due this Thursday

• Use turn in instructions in assignment

• Come get help in office hours! We can make your
life better

• Homework 7 out on Friday (smaller, in C++)

• No class next Monday (Memorial Day)

• Final is June 7 at 2:30pm-4:20pm in this room

Object Oriented
Programming (OOP)

• Popular programming paradigm
• Everything is an object
• Every object owns its own implementation, usually

given by its class
• In order to modify an existing program, a

programmer extends classes, overrides methods,
and so on

• Every part of a program can be extended,
everything is very open

C++ = C + OOP
• C++ was originally called C with Classes

• C was a useful language, but more modern object
oriented features were desired

• Many of the features were more “nice to have”
features, but Classes are core to C++

• Classes were controversial: some thought too slow

• Computers are much faster now, other criticisms
more common

Building Classes

• It is possible to write code with the exact same
behavior as a C++ virtual method call in C

• Today, in order to understand how C++ works,
we’ll do just that

Today’s Class
class Point {
 protected:
 int x;
 int y;
 public:
 Point();
 Point(int x, int y);
 int getX();
 int getY();
};

class MutPoint :
 public Point {
 public:
 void setX(int v);
 void setY(int v);
};

class PolarPoint : public Point {
 public:
 float getR();
 float getTheta();
};

C++

Normal Functions
• Class attempt #1:

typedef struct Point {
 int x;
 int y;
} Point;

Point Point_Constr(int x, int y) {
 point* p = (point*)malloc(sizeof(point));
 p->x = x;
 p->y = y;
 return p;
}

C

Normal Functions
• Class attempt #1:

Point* Point_ConstrD() {
 return Point_Constr(0,0);
}

int getX(Point* p) {
 return p->x;
}

int getY(Point* p) {
 return p->y;
}

C

Normal Functions
• Class attempt #1:

Point* p = Point_Constr(3,2);
printf(“(%d,%d)\n”,getX(p),getY(p));

C

class PolarPoint : public Point {
 private:
 float r,theta;
 public:
 PolarPoint(float r, float t);
 float getR();
 float getTheta();
};

Today’s Class
class Point {
 protected:
 int x;
 int y;
 public:
 Point();
 Point(int x, int y);
 int getX();
 int getY();
};

C++

Normal Functions
• Class attempt #1:

typedef struct Point {
 int x;
 int y;
} Point;

C

typedef struct PolarPoint {
 int x;
 int y;
 float r;
 float theta;
} PolarPoint;

Normal Functions
• Class attempt #1:

int getX(Point* p) {
 return p->x;
}

int getY(Point* p) {
 return p->y;
}

C

int getXP(PolarPoint* p) {
 return p->x;
}

int getYP(PolarPoint* p) {
 return p->y;
}

Normal Functions
• Class attempt #1:

PolarPoint* p = PolarPoint_Constr(3,2);
printf(“(%d,%d)\n”,getXP(p),getYP(p));

C

No SubtypingNo Subtyping

Dynamic Dispatch

• Core of object oriented programming

• Allows for the code of method calls to be chosen at
run time, based on the dynamic type of the receiver
object

• This is necessary to make getX, getY work with
our new PolarPoint class

How would you implement
this?

class Point {
 protected:
 int x;
 int y;
 public:
 Point();
 Point(int x, int y);
 int getX();
 int getY();
};

How it is implemented

1 per class

//Point class
int getX();
int getY();

//Point object
vtable pointer;
int x;
int y;

C++

class PolarPoint : public Point {
 private:
 float r,theta;
 public:
 PolarPoint(float r, float t);
 float getR();
 float getTheta();
};

How it is implemented

//PolarPoint obj
vtable pointer;
int x;
int y;
float r;
float theta;

//PolarPoint
int getX();
int getY();
float getR();
float getTheta();

C++

How it is implemented
Point* p = new PolarPoint(3,2);
std::cout << p->getX() << std::endl;

C++

//PolarPoint obj
vtable pointer;
int x;
int y;
float r;
float theta;

//PolarPoint
int getX();
int getY();
float getR();
float getTheta();

Point* p = new PolarPoint(3,2);
std::cout << p->getX() << std::endl;

Questions?

Pros

• If classes are extended, no need to recompile code
which uses objects of that class

• Cost of virtual method call is low: 2 pointer lookups,
likely in cache anyway, virtually no difference with
normal function calls

Cons

• A field of your object now exclusively determines
what code gets called

• This is a security hole which has lead to at least
one zero-day vulnerability in practice

