CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 23: C++: Viables



Administrivia

Homework © Is due this Thursday
* Use turn in instructions in assignment

 Come get help in office hours! We can make your
ife better

Homework 7 out on Friday (smaller, in C++)
No class next Monday (Memorial Day)

Final is June 7 at 2:30pm-4:20pm in this room



Object Orienteo
Programming (OOP)

Popular programming paradigm
Everything is an object

Every object owns its own implementation, usually
given by its class

In order to modify an existing program, a
programmer extends classes, overrides methods,
and so on

Every part of a program can be extended,
everything Is very open



C++=C + O0OP

C++ was originally called C with Classes

C was a useful language, but more modern object
oriented features were desired

Many of the features were more “nice to have”
features, but Classes are core to C++

Classes were controversial: some thought too slow

 Computers are much faster now, other criticisms
more common



Building Classes

* |tis possible to write code with the exact same
behavior as a C++ virtual method call in C

* Joday, in order to understand how C++ works,
we'll do just that



Today's Class G

class Point {

protected:
int x;
int y;

public:
Point () ;

Point (1nt x, int v);
int getX () ;
int getY ()

} s



: C
Normal Functions .

e Class attempt #1:
typedef struct Point {
int x;
int vy;
} Point;

Point Point Constr(int x, 1nt y) {

polnt* p = (polnt*)malloc(sizeof (point));
pP->X = X;
p->y = ¥s

return p;



. C
Normal Functions .

e Class attempt #1:

Point* Point ConstrD() {
return Point Constr (0,0);

J

int getX (Point* p)
return p—->x;

J

int getY (Point* p) {
return p-—->vy;
}



. C
Normal Functions .

e Class attempt #1:

Point* p = Point Constr(3,2);
printf (Y (%d, $d) \n”, getX (p),getY (p)) ;



Today's Class G

class Point {

protected:
int x;
int y;

public:
Point () ;

Point (1nt x, int v);
int getX () ;
int getY ()

} s



: C
Normal Functions .

e Class attempt #1:

typedef struct Point {
int x;
int vy;

} Polnt;

typedef struct PolarPoint {
int x;
int vy;
float r;
float theta;
} PolarPoint;



. C
Normal Functions .

e Class attempt #1:
int getX (Point* p) {
return p—->x;

J

int getY (Point* p)
return p->y;

} int getXP (PolarPoint* p) {

return p—->x;

J

int getYP(PolarPoint* p) {
return p->y;
J



. C
Normal Functions .

e Class attempt #1:

PolarPoint* p = PolarPoint Constr(3,2);
printf (Y (%d, $d) \n”,getXP (p),getYP (p)) ;

No Subtyping




Dynamic Dispatch

* Core of object oriented programming

* Allows for the code of method calls to be chosen at
run time, based on the dynamic type of the receliver
object

* Thisis necessary to make getX, getY work with
our new PolarPoint class



HOw would you Implement
this®



How It IS Implemente

class Point {
protected:

public:

by

int x;
int vy

Point

//Point classipt v);

int getX () ;

int getY();

//Point object

vtable pointer;

int x;

int vy;




How It IS Implemente

class PolarPoilnt
private:

float r,theta;

public:

}r

PolarPoint (float r,

float getR{();
//PolarPoint

public Point {

float t);

//PolarPoint obj

int getX();
int getY (),
float getR();

vtable polnter;

int x;

int y;

float getThetal();

float r;

float theta;




HOWw It IS

implemente

Polnt* p = new PolarPoint(3,2);
std: :cout << p->getX() << std::endl;

//PolarPoint

int getX();
int getY (),
float getR();

float getThetal();

//PolarPoint obj
+——{vtable polnter; |
int x;
int vy;
float r;
float theta;




Questions?



Pros

* |f classes are extended, no need to recompile code
which uses objects of that class

e Cost of virtual method call is low: 2 pointer lookups,

Ikely In cache anyway, virtually no difference with
normal function calls



cons

* A field of your object now exclusively determines
what code gets called

* This is a security hole which has lead to at least
one zero-day vulnerability in practice




