
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 22: C++: Inheritance, Subclasses

Administrivia
• HW6a due last night

• We’ll grade ASAP, get you feedback before 6b is
due

• HW6b due next Thurs

• In order to use late days, both partners must
have them

Subclassing
• Remember Java, where you could extend one

class with another?

• It turned out to not always be the best design…

• You can do the same thing in C++

• C++ gives you lots more options than Java, and
different defaults

• If something seems not right, it’s probably “using
the wrong feature” not “compiler bug”

Subclassing

• In C++, you can subclass in the following way:

 class D : public C { … }

• This is public inheritance, C++ also has other kinds
(which we won’t cover)

• DO NOT FORGET the public keyword above

Subclassing
• Not all classes have a super class (unlike Java with

Object)
• Classes don’t have to have just one parent (don’t

do this, not only in 374, but also in life)
• Terminology:

• Java: “Superclass” and “Subclass”
• C++: “Base Class” and “Derived Class”

• As in Java, you can add fields/methods/
constructors, and override methods

Constructors and Destructor
• Constructor of base class gets called before

constructor of derived class
• If not specified, default (0 arg) constructor is called
• Can specify with initializer syntax (considered good

style)
Foo::Foo() : Bar(args); other_data(x){ … }

• Destructor of base class called after destructor of
derived class

• Constructors really extend rather than override

Method Overriding (part 1)
• If a derived class defines the same method (name

and param types) as the base class, that method
gets overridden

• If you want to call base class code, use
class::method(…)

• Like super, but C++ has no super keyword

• Warning: This is just part 1, we’re not done yet

Casting and Subtyping
• An object of a derived class cannot be cast to an

object of a base class
• Same reason a struct T1 {int x,y,z;} can’t be

cast to a struct T2 {int x,y;} (different sizes)
• A pointer to an object of a derived class can be cast to

a pointer to an object of a base class
• Same reason you can cast a struct T1* to a
struct T2*

• This is called an upcast, field access works fine,
method calls are not what you would expect

Important Example
class A {
public:
 void m1() { cout << "a1"; }
virtual void m2() { cout << "a2"; }

};
class B : public A {
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }

};
void f() {
A* x = new B();
x->m1();
x->m2();

}

Explained
• A non-virtual method-call is resolved at compile time

using the static type of the expression

• A virtual method-call is resolved at runtime using the
dynamic type of the expression

• Like Java

• Called “dynamic dispatch”

• A method call is virtual if the method is marked virtual,
or overrides a virtual method

When to use
• For good engineering, use non-virtual by default,

only use virtual methods when actually needed
• This makes code easier to think about: at each

method call you know what code is being called
• Implementations:

• Non-virtual: same as normal method call, one
hidden parameter to the object

• Virtual: run-time lookup of what code to call via
“secret field” in the object (more next lecture)

Destructors
class B : public A { … }
…
B * b = new B();
A * a = b;
delete a;

• Will B::~B() get called (before A::~A())?
• Only if A::~A() was declared virtual

• Unlike methods, ALWAYS declare the destructor
virtual

Downcasts
• Casting to a derived class from a base class is

called a downcast

• If you do it right, it will work right

• If you do it wrong, no guarantee it is checked
(hopefully you crash but who knows?)

• Not like Java, don’t assume it’s checked

Pure virtual methods
• A C++ “pure virtual” method is like a Java “abstract”

method
• Some subclass must override because there is no

definition in the base class
• Makes sense with dynamic dispatch
• Unlike Java, no need or way to mark the class

specially
class C {
 virtual t0 m(t1,t2,t3…) = 0;
};

• No Java-style interfaces, instead this is it

C++ summary
• Lots of new syntax and ways to get it wrong, but

just a few new concepts
• Objects vs. Pointers to Objects
• Destructors
• virtual vs. non-virtual
• pass-by-reference
• Plus more (that we won’t cover): templates,

exceptions, and operator overloading

