
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 20: C++

Administrivia

• Git repositories for HW6: how’s it going?

• Clone and add something ASAP, to make sure it’s
working

AMT vulnerability

C++
• C++ is a large language. It contains:

• All of C
• Classes and Objects (sorta like Java)
• Little Conveniences (I/O, new/delete,

overloading, pass-by-reference, bigger library)
• Namespaces
• Lots we won’t touch (const, more casts,

exceptions, templates, multiple inheritance)

Our Focus
Object Oriented programming in a C-like language will
help you understand C and Java better.
• Objects can live on the heap or the stack
• Memory management is still manual
• Lots of ways to go wrong still
• Still headers and implementation files
• Allocation and initialization are still separate, but

easier to “construct” and “destruct”
• Programmer has more control over how method calls

work

Resources

• Lectures and sample code will be enough for your
1 (small) C++ assignment (HW7)

• Book called the C++ Primer is good

• cplusplus.com is a very helpful resource
(especially for the standard library)

http://cplusplus.com

Hello World in C++

#include <iostream>
int main() {
 std::cout << “Hello, World!” << std::endl;
 return 0;
}

Differences from C: new style headers, namespaces, I/O via
streams

Differences from Java: not everything is a class, any code can
go in any file, can write just procedural code

Compiling
• Almost the same as C, with a slightly different compiler

g++ -Wall -g -std=c++11 -o hello hello.cc

• The .cc extension is just a convention (just like .c for C)
but has other options (.cpp, .cxx, and .C are also C++
files)

• Still uses the C preprocessor

I/O

• Operator << takes an ostream and (various things)
and outputs it, then returns the stream

std::cout << 3 << “hi” << f(x) << ‘\n’;

• Operator >> takes an istream and (various things)
and reads input into the things

int x; std::cin >> x;

<< and >>
• We can think of << and >> as keywords, but they

are really something else

• We call them “operators”, and we can “overload”
them for different pairs of types

• In C they mean “left-shift” and “right-shift” for
numeric types, still works in C++

• Use another cool feature of C++ to get input
(coming soon)

Namespaces
• In C, all non-static functions in the program need different

names

• Even an OS with 10 million lines

• Namespaces (sorta like Java packages) let you group top
level names

namespace thespace { <definitions> }

• Example: Entire standard library is in namespace std

• To access a namespace, use thespace::some_fun()

Using
• In order to not have to always write
space::fun(), you can have a using declaration

• Example:
#include <iostream>
using namespace std;
int main() {
 cout << “Hello World” << endl;
 return 0;
}

Classes and Objects
• Like Java:

• Fields vs methods, static vs instance, constructors
• Method overloading (functions, operators, and

constructors too)
• Not like Java:

• access-modifier (public/private) syntax and
default

• declaration separate from implementation
• funny constructor syntax, default parameters

• Nothing like Java:
• Objects vs. pointers to objects
• Destructors and copy-constructors
• virtual vs. non-virtual (coming soon)

Stack vs Heap
• Java: cannot stack allocate an object
• C: can stack allocate a struct, then initialize
• C++: stack allocate and call a constructor: Thing t(100)

• Java: new Thing(..) calls constructor, returns pointer to
heap allocated object

• C: use malloc, then initialize, must free once later, uses
untyped pointers

• C++: Like Java, new Thing(..) but can also do new
int(42). Like C must deallocate, but must use delete
instead of free.

Destructors
• An objects destructor is called just before the space for

it is reclaimed
• A common use: reclaim space for heap allocated things

pointed to (first calling their destructors)
• Meaning of delete x: call destructor, then reclaim

space
• Destructors also get called for stack objects, when they

leave scope
• Advice: Always make destructors virtual (learn why

soon)

Arrays
• Create a heap allocated array of objects: new A[10]
• Calls default (0 argument) constructor for each

element
• Create a heap-allocated array of pointers: new
A*[10]

• More like Java, but not initialized
• As in C, new A() and new A[10] both have type A*
• Unlike C, to delete non-array write delete e
• Unlike C, to delete area write delete[] e
• Otherwise undefined behavior (sea monsters)

Call by Reference
• In C, arguments get copied

• copying a pointer means pointer to same thing

• Same in C++, but you can also use a reference
parameter (& before name when declaring function)

• void f(int& x) { x = x+1;}

• Called: f(y)

• Writes to y in callers context

Copy Constructors
• In C, we know x=y or f(y) copies y (if a struct, then

member wise copy)
• Same in C++, unless a copy-constructor is defined,

then do whatever that code says
• A copy-constructor takes a reference parameter (else

we’d need to copy, but that’s what we’re defining…)
• Copy constructor vs assignment:

• Copy constructor initializes new space to be a
copy

• Assignment replaces the value in existing space
with a new one: may need to clean up old state

const
• const can appear in many places in C++ code: means that value

doesn’t change (but can be subtle, especially with pointers)

• Examples:
const int default_length = 125; //better than
 //#define

void examine(const thing &t);

int getX() const;

• Checked by compiler, strong guarantee (unless you cast)

