CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
| ecture 20: C++



Administrivia

* Qit repositories for HW6: how’s it going?

* Clone and add something ASAP, to make sure it's
working



AMT vulnerability



C++

* C++ Is alarge language. It contains:
e Allof C
* Classes and Objects (sorta like Java)

e Little Conveniences (I/O, new/delete,
overloading, pass-by-reference, bigger library)

* Namespaces

* | ots we won't touch (const, more casts,
exceptions, templates, multiple inheritance)



Qur Focus

Object Oriented programming in a C-like language will
help you understand C and Java better.

Objects can live on the heap or the stack
Memory management is still manual

Lots of ways to go wrong still

Still headers and implementation files

Allocation and initialization are still separate, but
easler to “construct” and "destruct”

Programmer has more control over how method calls
WOork



Resources

* Lectures and sample code will be enough for your
1 (small) C++ assignment (HW7)

* Book called the C++ Primer is good

* cplusplus.com is a very helpful resource
(especially for the standard library)



http://cplusplus.com

Hello World In C++

#include <iostream>

int main () {
std::cout << “Hello, World!” << std::endl;
return 0O;

Differences from C: new style headers, namespaces, 1/O via
streams

Differences from Java: not everything is a class, any code can
go in any file, can write just procedural code



Compiling

* Almost the same as C, with a slightly different compiler

gt+ -Wall -g —-std=c++11l -o hello hello.cc

* [he .cc extension is just a convention (just like .c for C)
but has other options (.cpp, .cxx, and .C are also C++
files)

* Still uses the C preprocessor



/O

* Operator << takes an ostream and (various things)
and outputs it, then returns the stream

std::cout << 3 << “Yhi” << f(x) << M\n';

* Operator >> takes an istream and (various things)
and reads input into the things

int xX; std::cin >> xX;



<< and >>

We can think of << and >> as keywords, but they
are really something else

We call them “operators”, and we can “overload”
them for different pairs of types

In C they mean “left-shift” and “right-shift” for
numeric types, still works in C++

Use another cool feature of C++ to get input
(coming soon)



Namespaces

* In C, all non-static functions in the program need different
names

e Even an OS with 10 million lines

 Namespaces (sorta like Java packages) let you group top
level names

namespace thespace { <definitions> }
 Example: Entire standard library is in namespace std

[0 access a hamespace, use thespace:: some fun ()



Using

* |n order to not have to always write
space: : fun (), you can have a using declaration

e Example:

#include <iostream>

usling namespace std;

int main () {
cout << “Hello World” << endl;
return 0O;



Classes and Objects

e |ike Java:
* Fields vs methods, static vs instance, constructors
 Method overloading (functions, operators, and
constructors too)
* Not like Java:
» access-modifier (public/private) syntax and
default
* declaration separate from implementation
e funny constructor syntax, default parameters
* Nothing like Java:
* Objects vs. pointers to objects
e Destructors and copy-constructors
 virtual vs. non-virtual (coming soon)




Stack vs Heap

Java: cannot stack allocate an object
C: can stack allocate a struct, then initialize

C++: stack allocate and call a constructor: Thing t (100)

Java: new Thing (..) calls constructor, returns pointer to
heap allocated object

C: use malloc, then initialize, must free once later, uses
untyped pointers

C++: Like Java, new Thing(..) butcan also do new
int (42). Like C must deallocate, but must use delete
instead of free.



Destructors

An objects destructor is called just before the space for
it Is reclaimed

A common use: reclaim space for heap allocated things
pointed to (first calling their destructors)

Meaning of delete x: call destructor, then reclaim
space

Destructors also get called for stack objects, when they
leave scope

Advice: Always make destructors virtual (learn why
soon)



Arrays

Create a heap allocated array of objects: new A[10]

Calls detault (O argument) constructor for each
element

Create a heap-allocated array of pointers: new
A*[10]

More like Java, but not initialized
AS |

Un
Un

Otherwise undefi

ke C, to de

ke C, to de

e
e

N C, new A() and new A[10] both have type A*
te non-array write delete e

te area write delete[] e

ned behavior (sea monsters)



Call by Reference

In C, arguments get copied
e COpYINg a pointer means pointer to same thing

Same in C++, but you can also use a reference
parameter (& before name when declaring function)

- void f(int& x) { x = x+1;}

Called: £ (v)

Writes to y in callers context



Copy Constructors

In C, we know x=y or f(y) copies vy (if a struct, then
member wise copy)

Same in C++, unless a copy-constructor is defined,
then do whatever that code says

A copy-constructor takes a reterence parameter (else
we'd need to copy, but that's what we're defining...)

Copy constructor vs assignment:
* Copy constructor initializes new space to be a

COpPYy
* Assignment replaces the value Iin existing space
with a new one: may need to clean up old state



COnNst

e const can appear in many places in C++ code: means that value
doesn’t change (but can be subtle, especially with pointers)

 Examples:
const int default length = 125; //better than

//#define
vold examilne (const thing &t);

int getX () const;

 Checked by compiler, strong guarantee (unless you cast)



