
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 16: make

Administrivia
• HW5 out later today (or tomorrow)

• If you haven’t got your midterm back, email me or
come to my office hours (Tues 11am)

• Partners for HW6 due in one week (Wed May 10, at
midnight)

• Will be simple web survey, just fill in required info
for both partners, will be up shortly

Where we are

• You know C fundamentals now (all you need is
practice)

• For the rest of the course, we’re moving on to tools,
a little about malloc, C++, and a touch of undefined
behavior (super exciting!)

Compilation
• Remember the midterm: “compile a file only if the

source is newer than the executable”

• gcc -Wall -std=c11 -g prog.c -o prog
every time can get tedious

• Turns out something similar is extremely useful in
practice

• Why don’t we just write a small shell script for each
project?

Dependencies

• It turns out that dependency management is hard

• Even once we know all dependencies, calculating
what to compile is not trivial

• Thus we have a tool to help us out, called make

make

• Simple tool for:

1. running commands

2. using explicit dependencies to only run
necessary commands

Makefile
• make requires directions: commands and

dependencies

• we express these as rules in a file named Makefile

<target>: <dep1> <dep2>
 <command to run>TAB

prog.o: prog.c prog.h
 gcc -c prog.c -o prog.o -Wall -std=c11 -gTAB

special targets

• all: define a target called all, give it
dependencies of all finished products (i.e.
executables). Put it first in the file. When make
invoked, first target will be built.

• clean: define a target called clean, when make
clean invoked removes all generated files (e.g.
executables and .o files)

How to run
• must be in same directory as Makefile

• alternatively use any file as the Makefile with -f
option

• run make <targetname> to make a particular
target

• run make to build first target in file

Demo

• Remember last lecture?

• Let’s make a Makefile for the duo project

Data Structures in C
typedef struct charlist {
 char data;
 struct charlist* next;
} charlist;

typedef struct floattree {
 float data;
 struct floattree* children[2];
} floattree;

Data Structures in C

• Usually put data structures on the heap (use malloc
to create)

• Wrap data structure in accessor functions, declare
them in a header, implement in separate file

• Sometimes even have public and private header,
only expose data representation in private header

Data Structures in C

• Memory management is key: usually provide a
“release” method to free all memory used by
structure

• If data contained is a pointer to something else,
think carefully about who owns the data when

Trie
• A trie is similar to a binary tree, but with more

children

• Each node represents a single character in a
string, and each node has a number of children
possible equal to the number of letters in the
alphabet

• Tries are extremely good for looking up strings

Trie

H

Hi

i

Ha

a

Contains “Hi” and “Ha”

Does not contain “” or “H”

Homework Demo

• I’ll show you how your HW5 program should work

• writeup out later today or tomorrow

