
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 15: More Preprocessor, More Structs

Administrivia
• Midterm is over, you made it through

• Grades published in grade book after class

• Physical copies returned at end of class

• Answer Key posted online

• Homework 5 out this Wed, due next Thursday

• Homework 6 is with a partner. Start thinking about who
you want to work with

Today
• More about compilers

• basic C compiler anatomy

• more preprocessor features

• How to make large(r) programs

• compiling multiple files

Compilation
• What happens when you type:

gcc prog.c -o prog -Wall -g -std=c11

prog.c

prog.i prog.o prog

gcc

preprocess
compile link

Separate Compilation
gcc -E prog.c -o prog.i -Wall -g -std=c11

• preprocess prog.c, generate result prog.i

gcc -c prog.c -o prog.o -Wall -g -std=c11

• preprocess and compile prog.c, generate result prog.o

gcc prog.c -o prog -Wall -g -std=c11

• preprocess, compile, and link prog.c, generate result
prog

probably
never need

quite common

current use, less
common

Typical Usage

• Preprocessor used to #include declarations
describing code

• Linker combines all .o files and other code
• C standard library
• any .o files you give it (usually multiple)

prog.c

prog.i prog.o prog

gcc

preprocess
compile link

The Preprocessor
• Rewrites your file before the compiler

• Any lines starting with # are for the preprocessor
• Normal things to do:

• #include header files

• #define constants and parameterized macros

• conditional compilation with #if
• mostly for including header files exactly once

File Inclusion
#include <hdr.h>

• Search for hdr.h in the standard include
directories, and paste the preprocessed contents
of that file in this place

#include “hdr.h”

• Same as above, but look in current directory first
• use gcc -I /path/to/dir to specify additional

directories where headers might be found (not
used in this class)

Header File Conventions
1. Give included files a name ending in .h; only

include these header files. NEVER include a .c
source file.

2. Do not define functions in a header file; only struct
definitions, function prototypes, and other includes

3. Put all your includes at the top of your files, before
anything else

4. ALWAYS use include guards in every header file
(next slide)

The Problem

#include “a.h”
…

int x = 5;
…

a.h

b.h
#include “a.h”
#include “b.h”
…

foo.c

int x = 5;
int x = 5;
…

Include Guards
• Make sure your header file is always included

exactly once

• Use the preprocessor to make it happen

#ifndef FOO_H

#define FOO_H

<header file contents>

#endif //FOO_H

Use different variable for
each header file (usually

filename, foo.h -> FOO_H)

Simple Macros (review)
• Symbolic Constants
#define ABOUT_PI (22/7)

#define FEET_PER_MILE 5280

#define TIMEOUT_SEC 80

• Replaces all matching tokens in rest of file
• Has no notion of scope
• All caps not required, but is good style (pretty

much universal agreement)

Macros with Parameters
#define TWICE_TERRIBLE(x) x+x

#define TWICE_AWFUL(x) (x)+(x)

#define TWICE_BAD(x) x*2

#define TWICE_OK(x) ((x)*2)

int twice_best(int x) { return x+x; }

• Replace all matching calls with body, use string
substitution for arguments

• Many ways this can go wrong
• Common misconception: Macros avoid

performance overhead (true in 1975, but not today)
• Macros can be more flexible (no types)

Macros: the dark side
#define TWICE_TERRIBLE(x) x+x

TWICE_TERRIBLE(3)*2 ==> 3+3*2 ==> 9

#define TWICE_AWFUL(x) (x)+(x)

int x=4; TWICE_AWFUL(x++) ==>

 (x++)+(x++) ==> 9; x=6

Conditional Compilation
#ifdef FOO (matching #endif later)
#ifndef FOO (matching #endif later)
#if FOO > 2 (matching #endif later)
Simple: #ifdef DEBUG
 printf(…)
 #endif
Fancy: #ifdef DEBUG
 #define DBG_PRINT(x) printf(“%s”,x)
 #else
 #define DBG_PRINT(x)
 #endif

Header Files

• We want the freedom to include whatever we want,
without worrying

• Thus every header must (and does) use include
guards

• Be careful: use separate variable for each

#ifndef FOO_H

#define FOO_H

<header file contents>

#endif //FOO_H

Preprocessor Summary

• Runs before compilation

• #include for files

• #define for macros

• #if for conditional compilation

Midterms
• Class Average: 91.66/122 (75%)

• Std Deviation 18.3/122 (15%)

• How to talk to TAs/me about it

• READ ANSWER KEY FIRST

• We are happy to chat about answer key/grading/
anything once you’ve read the answer key

