CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 14: Data Structures in C

Administrivia
* Midterm on Friday! During class time: bring

something to write with that's not a red pen

* Review session last night, last bit of today’s
lecture will be Q&A as well

* Late Days: keep track of them, once they're gone
late work Is worth nothing

* Thursday TA office hours have moved to
3:30-4:30pm

logay

* Types in C: what you have to work with, how to make more
e Structs
 Parameter passing
e Typedefs
* Casts

e Signed/Unsigned: twos complement

e Q&A for Midterm

Structs

Sdi

struct point {

int x; .
int y;

};

Annoying but
necessary

Structs

struct point p;

struct polnt* g = &p;

p.x = 0;
p.y = p.X;
(*q) .x = 1;
qg->y = 1;

//q->y means

(*q)

D.X
P.Y

- Y

Parameters

* When parameters are passed, they're copied
* Pointers are copied as well
* Even structs are copied!

* Arrays are promoted to pointers, and the pointer
value Is copied

Struct Parameters

e Struct arguments are copied: can be expensive for
large structs

* Much more common is to pass a pointer to a struct

* Likewise, you can return a struct, but common

practice Is a pointer to a struct (usually on the
heap)

Data Structures

* You can make your favorite data structures in C!
* Linked Lists
* [rees
¢ Stacks

e Queues

Types in C

char, int, float, double, long double, short, size_t
void

struct T (where T has already been defined)
Array types (T[]) (easily promoted to pointers)
Pointer types (T7)

others (union T, enum T, function pointers)

typedet

* Just gives another name to a type
typedef 1nt count;
 Can have weird conseguences with Array types

e \Works well with structs

typedet

—

typedef struct point {

int x;
int vy;
} point;

struct point p;
polnt p;

Casts

e Sometimes you know more type information than C

e e.g. with the result of malloc

* You can force C to give something a different type
with a cast

 [o do so you just put the desired type In
parentheses in front of an expression

Casts

int* x = (int*)malloc (sizeof (1nt) *32);
polnt p;
p.x = 0;
p.y = 0;
int* g = (int¥*) &p;

(*q) = 3; //p.x is 3
struct poilnt *r = (struct point*)qg;

Signed and Unsigneo

All numbers are stored as bits

Some integer formats can have only positive
values, some can have negative values

int can have positive and negative

size tisonly positive
left bit

worth -(2W)
if signed 1 1 O 1

Midterm Q&A

* Ask and you might get an answer P

