
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 14: Data Structures in C

Administrivia
• Midterm on Friday! During class time: bring

something to write with that’s not a red pen

• Review session last night, last bit of today’s
lecture will be Q&A as well

• Late Days: keep track of them, once they’re gone
late work is worth nothing

• Thursday TA office hours have moved to
3:30-4:30pm

Today
• Types in C: what you have to work with, how to make more

• Structs

• Parameter passing

• Typedefs

• Casts

• Signed/Unsigned: twos complement

• Q&A for Midterm

Structs

struct point {
 int x;
 int y;
};

tag

fieldname

Annoying but
necessary

Structs
struct point p;
p.x = 0;
p.y = p.x;
struct point* q = &p;
(*q).x = 1;
q->y = 1; //q->y means (*q).y

p.x

p.y

0

0

q &p

1

1

Parameters

• When parameters are passed, they’re copied

• Pointers are copied as well

• Even structs are copied!

• Arrays are promoted to pointers, and the pointer
value is copied

Struct Parameters

• Struct arguments are copied: can be expensive for
large structs

• Much more common is to pass a pointer to a struct

• Likewise, you can return a struct, but common
practice is a pointer to a struct (usually on the
heap)

Data Structures
• You can make your favorite data structures in C!

• Linked Lists

• Trees

• Stacks

• Queues

• …

Types in C
• char, int, float, double, long double, short, size_t

• void

• struct T (where T has already been defined)

• Array types (T[]) (easily promoted to pointers)

• Pointer types (T*)

• others (union T, enum T, function pointers)

typedef

• Just gives another name to a type

• Can have weird consequences with Array types

• Works well with structs

typedef int count;

typedef

typedef struct point {
 int x;
 int y;
} point;

struct point p;
point p;

Casts
• Sometimes you know more type information than C

• e.g. with the result of malloc

• You can force C to give something a different type
with a cast

• To do so you just put the desired type in
parentheses in front of an expression

Casts
int* x = (int*)malloc(sizeof(int)*32);

point p;
p.x = 0;
p.y = 0;
int* q = (int*)&p;
(*q) = 3; //p.x is 3
struct point *r = (struct point*)q;

Signed and Unsigned

• All numbers are stored as bits

• Some integer formats can have only positive
values, some can have negative values

• int can have positive and negative

• size_t is only positive

1 1 0 1
left bit

worth -(2w)
if signed

Midterm Q&A

• Ask and you might get an answer :P

