
CSE 374: Programming 
Concepts and Tools

Eric Mullen 
Spring 2017 

Lecture 10: Locals, lvalues vs rvalues, more pointers



Administrivia

• Homework 3 is out: start working TODAY if you 
haven’t already 

• Midterm is a week from Friday, during class time 

• Would people like a review session?



Process Execution

• Recall the single address space 

• This holds everything during execution 

• But when, exactly?

Code Globals Heap -> <- Stack

0x0000 0xFFFF



Scope
• The scope of a variable describes when it will exist, 

programmatically 

• At runtime, everything needs memory space 

• C has several different ways to declare the scope 
of something 

• Most all reuse the keyword static in different ways 

• Reminder: Allocating space is separate from 
initializing that space



Scope
• Global Variables: declared outside any function, 

allocated before main called, deallocated after main 
returns 
• usually bad style, can be ok for truly global data 

• Static Global Variables: declared just like globals, but 
use the static keyword, restricted to use within one file 
• related: static functions are also limited to within one file 

• Static Local Variables: lifetime like globals, but use 
restricted to one function. NOT USED IN THIS CLASS 

• Local Variables: allocated when reached, deallocated at 
end of block



lvalues and rvalues
• assignment in C: <lvalue> = <rvalue> 

• <lvalue> evaluates to a location 

• <rvalue> evaluates to a value 
• Key difference is with variables 

• On the left, variable evaluates to a location 
• On the right, variable is accessed, and we get 

the contents of that location 
• Recall in Bash: we used $foo on right side



Function Arguments
• Storage and Scope of arguments is like for local 

variables 

• Except: arguments are initialized by copying their 
value 

• Assigning to an argument has no effect on caller 

• Except: assigning to space pointed to by 
argument might affect the caller



Example
void f() { 
  int i=17; 
  int j=g(i); 
  printf(“%d %d”,i,j); 
}

int g(int x) { 
  x = x + 1; 
  return x + 1; 
}

i 17

x 1718

19

j 19



Example
void f() { 
  int i=17; 
  int j=g(&i); 
  printf(“%d %d”,i,j); 
}

int g(int *p) { 
  *p = (*p) + 1; 
  return (*p) + 1; 
}

i 17

p

18

19

j 19



Example
void f() { 
  int i=17; 
  int j=g(&i); 
  printf(“%d %d”,i,j); 
}

int g(int *p) { 
  int k = *p; 
  int *q = &k; 
  *p = *q; 
  *p = (*q) + 1; 
  return (*q) + 1; 
}

i 17

p

k 17

q

18

18

j 18



Pointers to pointers to…
• You can construct this as deep as you want: 

• Example: argv, *argv, **argv 

• However, &(&p) makes no sense: (&p) is not an 
lvalue, the value is an address, but the value is not 
in a particular place 

• Note: When playing, the %p format string will let 
you print out the value of pointers



Example

void f(int x) { 
  int* p = &x; 
  int** q = &p; 
  //at this point x, p, *p, *q, and **q 
  //make sense as rvalues 
}



Dangling Pointers

• aka how to shoot yourself in the foot 

• If you have a pointer to something, and what it 
points to goes out of scope, the pointer you have is 
now dangling 

• Be careful of this!



Dangling Pointers
//always returns 
//a dangling pointer 
int* foo() { 
  int x = 5; 
  return &x; 
}

void bar() { 
  int* x = foo(); 
  *x = 7; 
}

x 5

x



Arrays and Pointers
• If p has type T* or T[]: 

• *p has type T 

• If i is an int, p+i refers to the location of an item of type T 
that is i items past p (not i bytes, unless each T takes 
only one byte) 

• p[i] is defined to mean *(p+i) 

• if p is used in an expression, it has type T* 

• even if it is declared to have type T[]


