
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 9: intro to C

Administrivia

• Homework 2 turned in

• Homework 3 out this afternoon: start early!

• Ramp up again from HW2

• How’s everything going?

Where we are
• We’ve just set out to C

• Today we’re going to learn to navigate more of the
language

• Control Structures, Boolean Expressions, Null

• Declarations and Definitions, Forward References, Array
Declarations, Pointer Declarations

• C Preprocessor

• printf and scanf, convenient IO

Control in C
• if (<expr>) { <body> }

• if (<expr>) { <body> } else { <body> }

• while (<expr>) { <body> }

• do { <body> } while (<expr>)

• for (<init>; <expr>; <stmt>) { <body> }

• continue; break; switch…

Expressions
• There is no boolean type in C

• Instead, everything is true, except 0 and Null

• People have added their own boolean libraries, but
nothing has stuck

• Same comparison operators as Java: <, >, <=, >=,
==, !=

• You can also use a number as a boolean (or negate it
with !)

Examples

• Loop 100 times
for (int i = 0; i < 100; i++) {
 printf(“%d\n”, i); //print out
value of i
}
• Do something if x is not Null
if (x) {
 <something>
}

Null
• What is it? Nothing

• It’s the value stored in a pointer which points
nowhere

• NEVER dereference Null

• Used to denote “nothing’s here”

• Think of it as a blank treasure map, leading
nowhere

??

Declarations/Definitions
• Declaration

• Telling the world something is there
• Only concerned with external shape, or type
• As many times as you want (but only once per

file/scope)
• Definition

• Filling in the internal bits
• Only once

Functions
• Declaration

int twice(int x);

• Definition

int twice(int x) {

 return 2 * x;

}

Forward References
• Anything you use must be declared before use

• (Defining counts as declaring)

• Cannot have forward references:
int main(int argc, char* argv[]) {
 int y = twice(argc);
 printf(“%d\n”, y);
}
int twice(int x) {
 return 2 * x;
}
X

How to structure a file

• If you have 2 functions f and g, and f calls g, define
g before you define f

• If they need to call each other, you have to declare
one before defining it

Classic C

• In old classing C, all variable declarations need to
come at the beginning of a block

• Thankfully that is no longer the case

• Ignore your book on this one

Array Declarations
• Uninitialized Arrays:
int n[10];

char buffer[128];

• Initialized Arrays:
int n[3] = {0,0,0};

• As Function Parameters:
int sum(int x[], int x_length) { … }

Actually a pointer

Multiple Declarations
• You can put multiple declarations on one line

• e.g. int x, y, z;

• This will get you in trouble fast!

• e.g. int* x, y, z;

• One declaration per line, especially if it’s a pointer
type

C Preprocessor
• Rewrites your files before the compiler gets code
• Everything that starts with #
• This can do normal and crazy things

• Please stick to the more normal

1. Include header files (Today)

2. Define constants (Today) and parameterized
macros (Later)

3. Conditional compilation (Later)

#include
• #include <foo.h>

• Look for foo.h in “system directories”, find and
preprocess contents (recursion), and paste results
literally (as a string) into this file

• #include “foo.h”

• Same as above, but look in current directory first

• gcc -I dir1 -I dir2 will pass in search
directories for header files (we won’t need in this
class)

Macros and Constants
• #define replaces tokens in the rest of the file

• Knows where words (tokens) start and end (unlike
sed)

• No notion of scope
#define foo 17
void f() {
int food = foo; //int food = 17;
int foo = 9+foo+foo; //int 17 = 9+17+17;
}

printf and scanf
• “Just” two library functions

• Declared in <stdio.h>

• Used to print to stdout and read from stdin

• They can take any number of arguments

• The “f” in name stands for formatted

• Number of arguments better match number of % in
format string

• Corresponding arguments better have the right type

• For scanf must be pointer type (int* for %d, still
char* for %s)

• Compiler probably won’t check for you

• If you don’t follow rules, hopefully you crash soon, but
who knows?

printf and scanf

printf and scanf
• Many different formatting options

• Read documentation to find all of it

• Padding, precision, left/right, decimal/hex, etc…

• You must check scanf to see if it worked

• input may not have matched text

• maybe some number typed in not a number

scanf
• scanf looking for a string (%s) will read until

whitespace, and write into provided string

• If you don’t have enough space, it will overwrite
something else

• You can limit it with %20s or %45s

• The number given is number of characters, you
still need more room for ‘\0’ terminator

