CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 9: introto C

Administrivia

* Homework 2 turned In
* Homework 3 out this afternoon: start early!
* Ramp up again from HW?2

* How'’s everything going?

Where we are

 We've just setoutto C

e Joday we're going to learn to navigate more of the
language

» Control Structures, Boolean Expressions, Null

e Declarations and Detfinitions, Forward References, Array
Declarations, Pointer Declarations

* C Preprocessor

e printf and scanf, convenient |O

Control In C

+ 1f (Kexpr>) { <body> }

+ if (<expr>) { <body> } else { <body> }

* while (<expr>) { <body> }

+ do { <body> } while (<expr>)

+ for (<init>; <expr>; <stmt>) { <body> }

- continue; break; switch..

EXPressions

There is no boolean type in C

Instead, everything is true, except 0 and Null

People have added their own boolean libraries, but
nothing has stuck

Same comparison operators as Java: <, >, <=, >=,

’

You can also use a number as a boolean (or negate it
with !)

Examples

* Loop 100 times
for (int 1 = 0;, 1 < 100, 1++) {

printf (“$d\n i); //print out
value of 1
}
* Do something if x is not Null
1t (x) |
<something>
}

Null

What is it? Nothing

It's the value stored in a pointer which points

nowhere , P

NEVER dereference Null

Used to denote “nothing’s here” ¢ j

=<

Think of it as a blank treasure map, leading
nowhere

Declarations/Definitions

* Declaration
* Telling the world something is there
* Only concerned with external shape, or type

* As many times as you want (but only once per
file/scope)

* Definition
* Hilling In the internal bits

* Only once

Functions

e Declaration

int twice(int x);
* Definition

int twilice (int x) {

return 2 * XxX;

Forward References

* Anything you use must be declared before use
* (Defining counts as declaring)

e Cannot have forward references:

1nt main (v , char* argv|[]) {
int vy
printf (

J

int twice
return

How to structure a file

* |t you have 2 functions t and g, and f calls g, define
g before you define t

* |f they need to call each other, you have to declare
one before defining it

Classic C

* In old classing C, all variable declarations need to
come at the beginning of a block

* Thankfully that is no longer the case

* |gnore your book on this one

Array Declarations

* Uninitialized Arrays:
int n[107];
char buffer[128];

* [nitialized Arrays:

int n[3] = {0,0,0};

e As Function Parameters:

int sum(int x[], int x length) { .. }

Actually a pointer

Multiple Declarations

You can put multiple declarations on one line
e.g. int x, vy, z;

This will get you in trouble fast!

e.g. int* x, vy, z;

One declaration per line, especially if it's a pointer
type

C Preprocessor

* Rewrites your files before the compiler gets code
* Everything that starts with #
* This can do normal and crazy things
* Please stick to the more normal
1. Include header files (Today)

2. Define constants (Today) and parameterized
macros (Later)

3. Conditional compilation (Later)

#include

« #include <foo.h>

e [ook for foo.h in “system directories”, find and
preprocess contents (recursion), and paste results
iterally (as a string) into this file

- #include “foo.h”

 Same as above, but look in current directory first

gcc -I dirl -I dir2 will pass in search
directories for header files (we won't need in this
class)

Macros and Constants

* #define replaces ftokens in the rest of the file

 Knows where words (tokens) start and end (unlike
sed)

* No notion of scope
#define foo 17

volid f () {
int food = foo; //int food = 17;
int foo = 94+foo+foo; //int 17 = 9+17+17;

J

orintf and scant

“Just” two library functions

* Declared in <stdio.h>

Used to print to stdout and read from stdin
They can take any number of arguments

The “1” In name stands for formatted

orintf and scant

Number of arguments better match number of % In
format string

Corresponding arguments better have the right type

* For scanf must be pointer type (int* for %d, still
char* for %s)

Compiler probably won’t check for you

It you don't follow rules, hopetully you crash soon, but
who knows?

orintf and scant

* Many different formatting options
* Read documentation to find all of it

* Padding, precision, left/right, decimal/hex, etc...
* You must check scanf to see if it worked

* Input may not have matched text

* maybe some number typed in not a number

scanf

* scanf looking for a string (%s) will read until
whitespace, and write into provided string

* |t you don't have enough space, it will overwrite
something else

e You can limit it with %20s or %45s

* The number given is number of characters, you
still need more room for \O’ terminator

