
CSE 374: Programming 
Concepts and Tools

Eric Mullen 
Spring 2017 

Lecture 8: intro to C



Administrivia
• Posting shell scripts: They’ll be up on the website 

today (thanks several people who asked) 

• Homework 2: Due tomorrow night at midnight. Late 
days would be inadvisable to use. 

• Homework 3: Out by Friday lecture 

• Make sure you’re using klaatu for your homework!



C

• Put on your archeologist hat… 

• Think back to a wilder time (1971)… 

• Let’s dive in!



C
• Contrast with Java: 

• Lower level, closer to machine 
• More unsafe (there are NO training wheels) 
• Procedural: no more objects 
• Standard library is small 
• Similar control and syntax 
• Fundamentally different mental model 



C

• C I’m going to teach you is not all technically 
allowed by the standard 

• rather, is how it actually works on x86_64 
machines 

• I will try to tell you when we’re deviating from the 
standard, but it can be subtle



Why C?

• Despite being old, it’s extremely ubiquitous 

• Lots of new code, and lots of existing systems 

• How anyone writes software to interact with 
hardware



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



Language Basics
• Basic types: 

• int 

• float 

• char 

• More types: 
• pointers (*) 
• void (type of function with nothing to return)



Syntax
• Functions are declared similarly to Java: 
  int foo(int x) { 
    return x; 
 } 

• Variables are declared similarly as well: 
int x; 
int y = 0;

• While you can declare without initializing, don’t.

X



Standard Library

• You can “include” different functionality by using 

#include<nameoflibrary.h> 

• stdio.h contains printf, which prints to stdout



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



DEMO!



DEMO!
#include<stdio.h> 

int main() { 

    printf(“Hello World!\n”); 

}



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments





On the High Cs
• Memory is 1 dimensional array full of bytes 

• You can make maps which refer to things 

• Maps are just a number, we call them pointers 

• You can follow them wherever they lead

Code Globals Heap -> <- Stack

0x0000 0xFFFF



Pointer Syntax

• When declaring a type, int* means “pointer to an 
int” 

• When used in an expression, *x means follow x to 
where it goes



Careful!
• Would you always trust a pirate’s map? 

• Never blindly trust a pointer! 

• What happens if you do?





C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



C: Today

• Language basics 

• Hello World 

• Pointers 

• Hello with arguments



Arrays

• How might you implement an array in 
C?



Arrays
• Arrays are just multiple things right next to each 

other in memory 

• We hold on to an array by remembering where it 
starts 

• declare type with “int x[]” 

• We get elements with square braces 

• e.g. x[3]



Wait a minute…

• Arrays sound a lot like something else…



Command Line Arguments
#include<stdio.h> 

int main(int argc, char* argv[]) { 

    … 

}



char* argv[]
• You can read this as: “argv is an array of pointers to 

characters” 

• You can implicitly know that it’s really more like an 
array of strings 

• In C, a string is really just a bunch of characters 
next to each other in memory, followed by a special 
“\0” character (a null byte) 

• More on strings in a couple lectures



Demo


