
CSE 374: Programming 
Concepts and Tools

Eric Mullen 
Spring 2017 

Lecture 7: sed



Administrivia
• Homework 0: graded and returned 

• Homework 1: being graded as we speak 

• Homework 2: due Thursday at midnight 

• Homework 3: out on Friday 

• ssh keys: working? 

• No office hours at 11am tomorrow



Where we’re at

• Regular expressions are powerful for finding strings 

• Output of egrep is subset of its input 

• Use -v to invert pattern: print everything that 
doesn’t match 

• What if you want to manipulate strings instead?



sed
• Stream EDitor 

• Terrible little language for editing streams of strings 

• single most common use: 

sed -E -e ’s/pattern/replacement/g’ file 

• For each line in the file, replace every occurrence of the pattern 
with the replacement, and print result to stdout 

• Many options, you should look them up AND try them out 

• -E allows us to use extended syntax, just like egrep



sed

• There is so much more you can do with sed 

• If you find yourself trying, ask yourself if you should 

• Generally if it’s hard to write, it’s harder to debug, 
and this is very true with sed



Newlines

• sed doesn’t match newlines: they’re removed 
before processing and added back before printing 

• It’s hard but possible to do multiple line things with 
sed. Again, not can I? but should I? 

• Newlines are a pain across operating systems



Typewriters
• You can trace newline woes back to typewriters 

• Carriage Return (CR): \r 

• would return carriage to beginning of line 

• Line Feed (LF): \n 

• would advance paper by 1 line



Newlines
• How should modern Operating Systems represent 

newlines? 

• CR 

• LF 

• CR+LF 

• LF+CR Thankfully nothing since the 80s



We’re done with Bash

• Any questions?


