CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 4: More Shell Scripts

Homework 1

Already out, due Thursday night at midnight
Asks you to run some shell commands
Remember to use your pocket guide

Read instructions carefully

logay

We understand most of the bash shell and its “programming
language”. Final pieces we'll consider:

* Shell variables: Defining your own, builtin meanings, and
exporting

e Conditional statements
e Arithmetic
e For loops

End with:

* Confusing Bits (some bash-specific; some common to shells)
* Why long shell scripts are a bad idea, etc.

Shell Variables

 We already know a shell has state: current working
directory, streams, users, aliases, history.

* |ts state also includes shell variables that hold
strings.
— Always strings even if they are “123" — but you
can do math

 We already saw this a little, with PS1 and PATH

Shell Variables

* How to use:
e to set avariable: foo=‘anything’
* to make a new variable: just set it
e toread avariable: ${foo}
e tOo remove a variable: unset foo
e t0 see current variables: set

e For functions and local variables: see the manual

* All variables are global: can escape to anywhere

Why variables®

e Just like in other languages, they're useful

e Some special variables affect shell operation:
¢ PST
* PATH
* many others...

e Some variables only make sense when in a script

« S#, 50, S$1, $2, .. Sn, S@, S$*, $°?

EXport

e |f | start another process from my shell, will it see the
value of my variables”

 Answer: it depends

e You can determine whether it is with export
e export foo: foo will be visible to new process
e export -n foo: foo will not be visible

* |n practice, you'll see export foo=SOMETHING

-Xport

a.sh

» Suppose | have a script a. sh: echo $x

export x=12

export x=6

x=4
./a.sh
echo $x

./a.sh

I Statements

* Shell has if, just like java

* Just like other shell things, it's weird

?
1f -gt 1]

then
<do stufft>

<maybe more stuff>
f1

Arithmetic

Shell variables are always strings, SO k=$1+5$7 is not
integer addition

However, ((k=$i+$7)) works, and so does ((k=i+7))
So does let k="“$i + $3j”

In above examples, the shell converts the strings to
numbers

e |t won't error on malformed numbers, instead just make
it 0

~or Loops

¢ Syntax:

for v 1n x1 X2 X3 .. Xn
do

body
done

o EXxecute body n times, with v set to xi on ith iteration
e afterwards, v=xn

* Why so convenient?
 Don't have to write out x1 ... xn, can generate

o Use “s@™ for list of argument strings

Quoting

What does x=* do?

If x IS set to the string *, does $x mean * or all files in
current directory”

How do you get bash to expand things just enough?
You could use the manual, or you could just try it

\\ QN7

o X:
 echo X

« echo Sx

e echo ‘$x’ (suppresses all substitutions)

e echo “S$x” (suppresses some substitutions)

Ways to get it wrong

Variable name typo: oops=7 Just makes new variable, 1s
Soops gets empty string (just runs 1s)

Use same variable twice: just clobbered
HISTFILE=uhoh

Spaces in right hand side: use double quotes or will be
separated

Non-number used as number: turns into O

set foo=stuff silently does nothing (how you assign
in csh)

many more (to find for yourself)

Bash Programming vs. Java

 Bash
* “shorter”
e convenient file-access, file-tests, program execution, pipes
e crazy quoting rules and syntax
* also interactive
¢ Java
* not as many ways to trip up

* |ocal variables, modularity, typechecking, array bounds
checking, ...

e real data structures, libraries, regular syntax
* |fit's more than 200 lines, don’t do it in bash

Strings

* Suppose foo holds the string hello

Java Bash
read variable foo $foo
string constant foo “foo" foo
assign variable foo = hi foo=hi
string concat foo + “00” ${foo}oo
convert to number ibrary call silent and implicit

o Java: variables are easier. Bash: string constants easier
« Biased towards common use

Shell Programming

Computer scientists automate, and end up inventing bad
languages. Not just bash (consider javascript)

HW3 will be near the limits of what seems reasonable to
do with shell scripting

Many languages attempt to get the best of both worlds:
Perl, Ruby, Python, etc...

n some way it just gets you hooked on short programs

Picking bash for this class was partly to show you how
pad It can be

Next: Regular expressions, grep, sed, and others

Bottom Line

* Never do something manually when you could use
a script

* Never write a script it you need a large, robust
piece of software

* Some programming languages try to blur the line
between script and large software, you've seen 2
that don't (Java on one end, Bash on the other)

