
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 4: More Shell Scripts

Homework 1

• Already out, due Thursday night at midnight

• Asks you to run some shell commands

• Remember to use your pocket guide

• Read instructions carefully

Today
We understand most of the bash shell and its “programming
language”. Final pieces we’ll consider:

• Shell variables: Defining your own, builtin meanings, and
exporting

• Conditional statements
• Arithmetic
• For loops  

End with:
• Confusing Bits (some bash-specific; some common to shells)
• Why long shell scripts are a bad idea, etc.

Shell Variables

• We already know a shell has state: current working
directory, streams, users, aliases, history.

• Its state also includes shell variables that hold
strings. 
– Always strings even if they are “123” – but you
can do math

• We already saw this a little, with PS1 and PATH

Shell Variables
• How to use:

• to set a variable: foo=‘anything’
• to make a new variable: just set it
• to read a variable: ${foo}

• to remove a variable: unset foo

• to see current variables: set
• For functions and local variables: see the manual
• All variables are global: can escape to anywhere

Why variables?
• Just like in other languages, they’re useful

• Some special variables affect shell operation:

• PS1

• PATH

• many others…

• Some variables only make sense when in a script

• $#, $0, $1, $2, … $n, $@, $*, $?

Export
• If I start another process from my shell, will it see the

value of my variables?

• Answer: it depends

• You can determine whether it is with export

• export foo: foo will be visible to new process

• export -n foo: foo will not be visible

• In practice, you’ll see export foo=SOMETHING

Export
• Suppose I have a script a.sh:

export x=6

x=4

./a.sh

echo $x

./a.sh

echo $x
export x=12

a.sh

If Statements
• Shell has if, just like java

• Just like other shell things, it’s weird

if [$# -gt 1]
then
 <do stuff>
 <maybe more stuff>
fi

Space
Program

Arithmetic
• Shell variables are always strings, so k=$i+$j is not

integer addition

• However, ((k=$i+$j)) works, and so does ((k=i+j))

• So does let k=“$i + $j”

• In above examples, the shell converts the strings to
numbers

• It won’t error on malformed numbers, instead just make
it 0

For Loops
• Syntax:
for v in x1 x2 x3 … xn
do
body
done

• Execute body n times, with v set to xi on ith iteration
• afterwards, v=xn

• Why so convenient?
• Don’t have to write out x1 … xn, can generate
• Use “$@“ for list of argument strings

Quoting
• What does x=* do?
• if x is set to the string *, does $x mean * or all files in

current directory?
• How do you get bash to expand things just enough?
• You could use the manual, or you could just try it

• x=“*”
• echo x
• echo $x

• echo ‘$x’ (suppresses all substitutions)
• echo “$x” (suppresses some substitutions)

Ways to get it wrong
• Variable name typo: oops=7 just makes new variable, ls
$oops gets empty string (just runs ls)

• Use same variable twice: just clobbered
HISTFILE=uhoh

• Spaces in right hand side: use double quotes or will be
separated

• Non-number used as number: turns into 0
• set foo=stuff silently does nothing (how you assign

in csh)
• many more (to find for yourself)

Bash Programming vs. Java
• Bash

• “shorter”
• convenient file-access, file-tests, program execution, pipes
• crazy quoting rules and syntax
• also interactive

• Java
• not as many ways to trip up
• local variables, modularity, typechecking, array bounds

checking, …
• real data structures, libraries, regular syntax

• If it’s more than 200 lines, don’t do it in bash

Strings
• Suppose foo holds the string hello

Java Bash

read variable foo $foo

string constant foo “foo" foo

assign variable foo = hi foo=hi

string concat foo + “oo” ${foo}oo

convert to number library call silent and implicit

• Java: variables are easier. Bash: string constants easier
• Biased towards common use

Shell Programming
• Computer scientists automate, and end up inventing bad

languages. Not just bash (consider javascript)
• HW3 will be near the limits of what seems reasonable to

do with shell scripting
• Many languages attempt to get the best of both worlds:

Perl, Ruby, Python, etc…
• In some way it just gets you hooked on short programs
• Picking bash for this class was partly to show you how

bad it can be
• Next: Regular expressions, grep, sed, and others

Bottom Line
• Never do something manually when you could use

a script

• Never write a script if you need a large, robust
piece of software

• Some programming languages try to blur the line
between script and large software, you’ve seen 2
that don’t (Java on one end, Bash on the other)

