
CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017

Lecture 2: Globbing and Processes

Administrivia
• Overloading the class: Details on a slide at end. Many more

requests than slots, don’t have high hopes

• HW0 is out and due Friday at midnight

• I opened the discussion board to anyone with a UW ID

• Office hours posted on course website

• 4pm MTWF, 1:15pm on Thur with TAs (218)

• 11am on Tues with me (218)

• Friday lecture is guest lecture. Will be awesome!

Laptops

• Only screens flat on desk are allowed.

• Put away your laptops.

Where We Are
• We’re learning from scratch to use a computer

• All we have are little tiny programs (so far)
• Learning a model (files, processes, users) and how to

control (shell)
• Once you understand the model, it’s powerful
• Today:

• Processes and Users
• Globbing
• Text Editing

Users
• You, and others. Linux is built for multiple users

• Use whoami to show your username

• Each user has username and password, originally stored
in /etc/passwd

• Home directory, default shell. On login shell runs startup
scripts which you can edit (.bash_profile, .bashrc).

• There is one super user, root. Has permission to do
everything.

Hidden Files
• I just told you that .bash_profile and .bashrc are run

every time you log in.

• Turns out ls doesn’t display filenames that begin
with a .

• If you want to see them, use ls -a

• If you want more details about the files, use ls -l

• ls has lots more options, read about them

Programs
• A program is a file that can be executed

• Almost all system commands are programs

• The shell itself is a program

1. Reads lines as you type them

2. Finds whatever program you want, runs it

3. Upon exit of that program, go back to 1

Processes
• A process is what’s created when a program is run

• It is the running “thing”

• The shell runs a program by launching a process,
waiting for it to finish, and then gives you your prompt

• Each process has own memory and I/O streams

• A running shell is just a process that kills itself when
you type exit

Processes
• One application can be many processes

• You can interact with running processes on your machine

• <command> & to run in the background

• Ctl-z to suspend current process

• fg to resume in foreground, bg to resume in background

• ps to list processes, top more like a task manager

• kill to kill a process, Ctl-c to kill current process

Standard I/O Streams
• Each process has 3 standard streams: stdin

(input), stdout (output), and stderr (error
messages)

• The default behavior in the shell is the keyboard
hooked to stdin, and both stdout and stderr hooked
to print to the screen

image from http://www.randomnoun.com/wp/2013/10/08/its-all-made-out-of-pipes/

Entire System Recap

• The operating system manages everything

• We have a file system, users, processes

• Processes can perform I/O, change files, launch
other processes

How Does Bash Know?

• When you type ls, bash is finding and running the
ls program

• Uses the $PATH environment variable to know
where to look

• More on environment variables later…

Shell Scripts

• A shell script is just a file that contains shell
commands

• Sometimes we give them the file extension .sh, but
that’s only for human benefit (computer doesn’t
care)

• $1 means first argument, $2 for second, etc…

Running Shell Scripts

• ./script.sh makes new process

• If script is not in current directory, use the path to
the script instead. (i.e. /usr/bin/script.sh)

• source script.sh runs in same process

Globbing
• Bash is even more magical. It transforms arguments before it gives

them to programs.

• ~foo means the home directory for user foo

• ~ is your home directory

• * is all the files in the directory

• *.txt is all the files that end in .txt

• There’s lots more: ?, [abc], [a-E], [^a], etc..

• Sounds great now, works badly with grep (we’ll see in a few
weeks)

Globbing

• What if I want to pass a * as an argument?

• Put it in either single or double quotes, or escape it
(with a backslash)

• “*”, ‘*’, or *

History

• history prints out the previous commands
entered

• !!, !abc expand to previous commands

• Good for manual use, not so much in scripts

Alias
• Define one command to be another

• alias best_editor=emacs

• alias list_all=‘ls -a’

• alias lists existing aliases

• Careful: you can’t put spaces around the =

Bash Startup Files

• ~/.bash_profile on login shell

• ~/.bashrc on non-login shell

• My ~/.bash_profile includes (yours probably does
too):

if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

Editing Files

• You have options

• pico is easy, displays commands on screen

• emacs is what I know (and will teach you)

• vi/vim is also good

Emacs
• How to read an emacs command

• C-s means “Hold down ctrl, then press s”

• C-x C-c means “Hold down ctrl, press x, then press c
while still holding ctrl”

• C-x o means “Hold down ctrl, press x, then release
ctrl, and after press o”

• M-x means “Hold the meta key, then press x”. Usually
meta is the alt key

Emacs
• C-x C-c : quit

• C-x C-f : find (open) a file

• C-x C-s : save currently open file

• C-n : next line

• C-p : previous line

• C-f : forwards

• C-b : backwards

Emacs
• C-a : beginning of line

• C-e : end of line

• C-s : find string

• This is just scratching the surface, emacs is huge
and ridiculously complicated

• You should be able to complete this course with
just the commands on the previous page

Wrap Up

• OS, Filesystem, Users, Processes, Shell all make
up our linux system

• There are a million little tips and tricks, focus on the
core

• Text editors are useful, learning one will help you

Homework 0

• Don’t forget to do it by Friday at midnight!

• I opened the discussion board for anyone with a
UW login

• We’re enjoying the introduction emails

