CSE 374: Programming
Concepts and Tools

Eric Mullen
Spring 2017
Lecture 2: Globbing and Processes

Administrivia
Overloading the class: Details on a slide at end. Many more
requests than slots, don’'t have high hopes
HWO is out and due Friday at midnight
* | opened the discussion board to anyone with a UW [D
Office hours posted on course website
e 4pm MTWEF, 1:15pm on Thur with TAs (218)

 11am on Tues with me (218)

Friday lecture is guest lecture. Will be awesome!

| aptops

* Only screens flat on desk are allowed.

* Put away your laptops.

Where We Are

We're learning from scratch to use a computer

* All we have are little tiny programs (so far)

Learning a model (tiles, processes, users) and how to
control (shell)

Once you understand the model, it's powerful
Today:

* Processes and Users

* Globbing

e Jext Editing

Users

You, and others. Linux is built for multiple users
Use whoami to show your username

Each user has username and password, originally stored
N /etc/passwd

Home directory, detault shell. On login shell runs startup
scripts which you can edit (.bash_profile, .bashrc).

There is one super user, root. Has permission to do
everything.

Hidaen riles

* | just told you that .bash_profile and .bashrc are run
every time you log In.

e Jurns out 1s doesn't display filenames that begin
with a .

e |f you want to see them, use 1s -a

 |f you want more details about the files, use 1s -1

e 1s has lots more options, read about them

Programs

A program is a file that can be executed
* Almost all system commands are programs
* The shell itself is a program
1. Reads lines as you type them
2. Finds whatever program you want, runs it

3. Upon exit of that program, go back to 1

Processes

A process is what's created when a program is run
It Is the running “thing”

The shell runs a program by launching a process,
waliting for it to finish, and then gives you your prompt

Each process has own memory and I/O streams

A running shell is just a process that kills itself when
you type exit

Processes

 One application can be many processes
e You can interact with running processes on your machine

e <command> & torun in the background

o Ctl-z to suspend current process

e« fg toresume in foreground, bg to resume in background
* ps to list processes, top more like a task manager

e kill to kill a process, Ctl-c to Kill current process

Standard |/O Streams

* Each process has 3 standard streams: stdin
(input), stdout (output), and stderr (error
messages)

* The default behavior in the shell is the keyboard
hooked to stdin, and both stdout and stderr hooked

to print to the screen

STDOUT

STDIN)

STDERR

Entire System Recap

* The operating system manages everything
 We have a file system, users, processes

* Processes can perform |/O, change files, launch
other processes

How Does Bash Know?

 \When you type 1s, bash is finding and running the
1s program

e Uses the $PATH environment variable to know
where to look

e More on environment variables later...

Shell Scripts

* A shell script is just a file that contains shell
commands

* Sometimes we give them the file extension .sh, but
that's only for human benefit (computer doesn't
care)

e 51 means first argument, $2 for second, etc...

Running Shell Scripts

e ./script.sh makes new process

e |f script is not in current directory, use the path to
the script instead. (i.e. /usr/bin/script.sh)

e source script.sh runsin same pProcess

Globbing

Bash is even more magical. It transtorms arguments betfore it gives
them to programs.

~foo means the home directory for user foo

~ IS your home directory

* is all the files in the directory

* . txt is all the files that end in . txt

There's lots more: ?, [abc], [a-E], [*a], efc..

Sounds great now, works badly with grep (we'll see in a few
weeks)

Globbing

 What if | want to pass a * as an argument?

* Put it in either single or double quotes, or escape it
(with a backslash)

° u*u, :*!’ OI’ *

HiStory

e history prints out the previous commands
entered

e !l labc expand to previous commands

* (Good for manual use, not so much in scripts

Allas

e Define one command to be another

e alias best editor=emacs
e alias list all=‘'ls -a’
e alias lists existing aliases

e Careful: you can’t put spaces around the =

Bash Startup Files

~/.bash_profile on login shell
~/.bashrc on non-login shell

My ~/.bash_profile includes (yours probably does
t00):

if [-f ~/.bashrc]; then
. ~/.bashrc
fi

Eaiting Files

You have options
pico Is easy, displays commands on screen
emacs IS what | know (and will teach you)

vi/vim IS also good

Emacs

How to read an emacs command

C-s means “Hold down ctrl, then press s”

C-x C-c means “Hold down ctrl, press x, then press ¢
while still holding ctrl”

C-x 0 means “Hold down ctrl, press x, then release
ctrl, and after press 0"

M-x means "Hold the meta key, then press x". Usually
meta IS the alt key

Emacs

C-x C-c : quit

C-x C-t : find (open) a file

C-x C-s : save currently open file
C-n : next line

C-p : previous line

C-f : forwards

C-b : backwards

Emacs

C-a : beginning of line
C-e : end of line
C-s : find string

This Is just scratching the surface, emacs is huge
and ridiculously complicated

You should be able to complete this course with
just the commands on the previous page

Wrap Up

* OS, Filesystem, Users, Processes, Shell all make
up our linux system

* There are a million little tips and tricks, focus on the
core

* Jext editors are useful, learning one will help you

Homework O

* Don't forget to do it by Friday at midnight!

* | opened the discussion board for anyone with a
UW login

* We're enjoying the introduction emails

