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Administrivia 

•  HW7 due Thursday night, 11 pm 
–  (+ late days if you still have any & want to use 

them) 

•  Course evals – Please fill out this week. 

•  Final exam: Thur., Dec. 14, 2:30 pm.  Bring ID. 
–  Covers everything this quarter: 

•  But no heavy regexps, sed, etc. 
•  Old exams have some topics we didn’t have 

time for this quarter – will not be on our exam 
–  Review Q&A Wed. Dec. 13, 4:30 pm, EEB 045 
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Concurrency 

•  Computation where “multiple things happen at the same 
time” is inherently more complicated than sequential 
computation 

•  Entirely new kinds of bugs and obligations 
•  Two forms of concurrency: 

–  time-slicing: only one computation at a time but 
preempt to provide responsiveness or mask I/O latency 

–  true parallelism: more than one CPU (e.g., most 
consumer machines have 2-4, your laptop has ?, …) 

•  No problem unless the different computations need to 
communicate or use the same resources 
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Example: processes 

•  The O/S runs multiple processes “at once”. 
•  Why? (Convenience, efficient use of resources, 

performance) 
•  No problem: keep their address-spaces separate. 
•  But they do communicate/share via files (and pipes) 
•  Things can go wrong, e.g., a race condition: 

echo "hi" > someFile 
foo=`cat someFile` 
# assume foo holds the string “hi”?? 

•  The O/S provides synchronization mechanisms to 
avoid this 
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The old story 

•  We said a running Java or C program had code, a heap, 
global variables, a stack, and “what is executing right 
now” (in assembly, a program counter) 

•  C, Java support parallelism similarly (other languages can 
be different): 
–  One pile of code, global variables, and heap. 
–  Multiple “stack + program counter”s — called threads 
–  Threads can be pre-empted whenever by a scheduler 
–  Threads can communicate (or mess each other up) via 

shared memory 
•  Various synchronization mechanisms control what thread 

interleavings are possible. 
–  “Do not do your thing until I am done with my thing” 
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Threads in C and Java 

C: The POSIX Threads (pthreads) library 
#include <pthread.h> 

•  Link with –lpthread 
•  pthread_create takes a function pointer and an 

argument for it; runs it as a separate thread 
•  Many types, functions, macros for threads, locks, etc. 
Java: Built into the language 
•  Subclass java.lang.Thread overriding run 
•  Create a Thread object and call its start method 
•  Any object can “be synchronized on” (later) 
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Why do this? 

•  Convenient structure of code 
•  Example: two threads using information computed by the 

other 
•  Example: failure-isolation – each “transaction” in its own 

thread so if a problem just “kill that transaction” 
•  Example: Fairness – one slow computation only takes 

some of the CPU time without your own complicated timer 
code; Avoids starvation 

•  Performance 
•  Run other threads while one is reading/writing to disk or 

network (or other slow thing that can happen in parallel) 
•  Use more than one CPU at the same time 

–  The way computers get faster these days 
–  So no parallelism means no faster 
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Simple synchronization 

•  If one thread did nothing of interest to any other thread, 
why is it running? 

•  So threads have to communicate and coordinate 
–  Use each others’ results; avoid messing up each 

other’s computation 
•  Simplest two ways not to mess each other up (don’t 

underestimate!): 
1. Do not access the same memory 
2. Do not mutate shared memory 

•  Next simplest: One thread does not run until/unless 
another thread is done 
–  Called a join 
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Using parallel threads 

A common pattern for expensive computations: 
•  Split the work 
•  Join on all the helper threads (i.e., wait until all done) 
Called fork-join parallelism 
 
To avoid bottlenecks, each thread should have about 
the same amount of work (load-balancing) 
•  Performance depends on number of CPUs available 

and will typically be less than “perfect speedup” 
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Less structure 

•  Often you have a bunch of threads running at once 
and they might need the same mutable (writable) 
memory at the same time but probably not 

•  Want to be correct without sacrificing parallelism 
•  Example: A bunch of threads processing bank 

transactions: 
–  withdraw, deposit, transfer, currentBalance, ... 
–  chance of two threads accessing the same 

account at the same time very low, but not zero 
–  want mutual exclusion (a way to keep each other 

out of the way when there is contention) 
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The issue 

struct Acct { int balance; /* ... other fields ... */ }; 
 
int withdraw(struct Acct * a, int amt) { 
 if(a->balance < amt) return 1;   // 1==failure 
 a->balance -= amt; 
 return 0;                                    // 0==success 

} 
•  This code is correct in a sequential program 
•  It may have a race condition in a concurrent program, 

allowing a negative balance 
•  Discovering this bug is very hard with testing since 

the interleaving has to be “just wrong” 
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atomic 

Program must indicate what must appear to happen all-at-once 
int withdraw(struct Acct * a, int amt) { 

 atomic { 
    if(a->balance < amt) return 1;    // 1==failure 
    a->balance -= amt; 
 } 
 return 0;         // 0==success 

} 
Reasons not to do “too much” in an atomic: 
•  Correctness: If another thread needs an intermediate result to 

compute something you need, must “expose” it 
•  Performance: Parallel threads must access disjoint memory 

–  Actually read/read conflicts can happen in parallel 
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Getting it “just right” 

•  This code is probably wrong because critical sections too 
small: 

atomic { if(a->balance < amt) return 1; } 
atomic { a->balance -= amt; } 

•  This code (skeleton) is probably wrong because the 
critical section is too big: 
–  Assume other thread does not compute until data is set 

atomic { 
 data_for_other_thread = 42;    // set some global 
 ans = wait_for_other_thread_to_compute(); 
 return ans; 

} 
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So far 

•  Shared-memory concurrency where multiple threads 
might access the same mutable data at the same time is 
tricky 
–  Must get size of critical sections just right 

•  It’s worse because 
–  atomic does not yet exist in languages like C and Java 

•  Instead programmers must use locks (a.k.a. mutexes) or 
other mechanisms, usually to get the behavior of critical 
sections 
–  But misuse of locks will violate the “all-at-once” 

property 
–  Or lead to other bugs we haven’t seen yet 
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Lock basics 

A lock is acquired and released by a thread 
•  At most one thread “holds it” at any moment 
•  Acquiring it “blocks” until the holder releases it and 

the blocked thread acquires it 
–  Many threads might be waiting; one will “win” 
–  The lock-implementer avoids race conditions on 

the lock-acquire 
•  So to keep two things from happening at the same 

time, surround them with the same lock-acquire/lock-
release 
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Locks in C/Java 

•  C: Need to initialize and destroy mutexes (a synonym 
for locks) 
–  The joys of C 

•  An initialized (pointer to a) mutex can be locked or 
unlocked via library function calls 

•  Java: A synchronized statement is an acquire/ 
release 
–  Any object can serve as a lock 
–  Lock is released on any control-transfer out of the 

block (return, break, exception, ...) 
–  “Synchronized methods” just save keystrokes 
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Choosing how to lock 

•  Now we know what locks are (how to make them, what 
acquiring/releasing means), but programming with them 
correctly and efficiently is difficult... 
–  As before, if critical sections are too small we have 

races; if too big we may not communicate enough to 
get our work done efficiently 

–  But now, if two “synchronized blocks” grab different 
locks, they can be interleaved even if they access the 
same memory 

•  A “data race” 
–  Also, a lock-acquire blocks until a lock is available and 

only the current-holder can release it 
•  Can have “deadlock” ... 
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Deadlock 
   Object a; 
   Object b; 

 
void m1() {   void m2() { 

 synchronized a {     synchronized b { 
 synchronized b {     synchronized a { 

... ... 
}} }    }} } 

•  A cycle of threads waiting on locks means none will ever run 
again! 

•  Avoidance: All code acquires locks in the same order (very hard 
to do).  Ad hoc: Don’t hold onto locks too long or while calling 
into unknown code 

•  Recovery: detect deadlocks, kill off and rerun one of the 
processes (databases) 
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Rules of thumb 

•  Any one of the following are sufficient for avoiding races: 
–  Keep data thread-local (an object is reachable, or at 

least only accessed by, one thread) 
–  Keep data read-only (do not assign to object fields after 

an object’s constructor) 
–  Use locks consistently (all accesses to an object are 

made while holding a particular lock) 
–  Use a partial-order to avoid deadlock (over-simple 

example: do not hold multiple locks at once?) 
•  These are tough invariants to get right, but that’s the price 

of multithreaded programming today 
•  But... one way to do all the above is to have “one lock for 

all shared data” and that is inefficient... 
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False sharing 

•  “False sharing” refers to not allowing separate things 
to happen in parallel. Example: 

synchronized x {  synchronized x { 
 ++y;       ++z; 

}     } 
•  More realistic example: one lock for all bank accounts 

rather than one for each account 
•  On the other hand, acquiring/releasing locks is not so 

cheap, so “locking more with the same lock” can 
improve performance 

•  This is the “locking granularity” question 
–  Coarser vs. finer granularity 
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What about this? 

•  If each bank account has its own lock, how do you 
write a “transfer” method such that no other thread 
can see the “wrong total balance”? 
// race (not data race)  // potential deadlock 
void xfer(int a,Acct other){  void xfer(int a,Acct other){ 

 synchronized(this) {      synchronized(this) { 
    balance += a;       synchronized(other) { 
    other.balance -= a;   balance += a; 
 }      other.balance -= a; 

}      }}} 

•  The problem is there is no relative order among 
accounts, so “inverse transfers” could deadlock 
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A final gotcha 

•  You would naturally assume that all memory accesses 
happen in “some consistent order” that is “determined by 
the code” 

•  Unfortunately, compilers and chips are often allowed to 
cheat (reorder)! The assertion in the right thread may fail! 

  initially flag==false 
data = 42;   while(!flag) {  } 
flag = true;   assert(data==42); 

•  To disallow reordering the programmer must: 
–  Use lock acquires (no reordering across them), or 
–  Declare flag to be volatile (for experts, not us) 
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Conclusion 

•  Threads make a lot of otherwise-correct approaches 
incorrect 
–  Writing “thread-safe” libraries can be excruciating 
–  Use an expert implementation if you can, e.g., 

Java’s ConcurrentHashMap & others 
•  But they are increasingly important for efficient use of 

computing resources 
•  Locks and shared-memory are (just) one common 

approach 
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