
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2017

Lecture 22 – Shared-Memory Concurrency

UW CSE 374 Fall 2017 1

Administrivia

•  HW7 due Thursday night, 11 pm
–  (+ late days if you still have any & want to use

them)

•  Course evals – Please fill out this week.

•  Final exam: Thur., Dec. 14, 2:30 pm. Bring ID.
–  Covers everything this quarter:

•  But no heavy regexps, sed, etc.
•  Old exams have some topics we didn’t have

time for this quarter – will not be on our exam
–  Review Q&A Wed. Dec. 13, 4:30 pm, EEB 045

UW CSE 374 Fall 2017 2

Concurrency

•  Computation where “multiple things happen at the same
time” is inherently more complicated than sequential
computation

•  Entirely new kinds of bugs and obligations
•  Two forms of concurrency:

–  time-slicing: only one computation at a time but
preempt to provide responsiveness or mask I/O latency

–  true parallelism: more than one CPU (e.g., most
consumer machines have 2-4, your laptop has ?, …)

•  No problem unless the different computations need to
communicate or use the same resources

3 UW CSE 374 Fall 2017

Example: processes

•  The O/S runs multiple processes “at once”.
•  Why? (Convenience, efficient use of resources,

performance)
•  No problem: keep their address-spaces separate.
•  But they do communicate/share via files (and pipes)
•  Things can go wrong, e.g., a race condition:

echo "hi" > someFile
foo=`cat someFile`
assume foo holds the string “hi”??

•  The O/S provides synchronization mechanisms to
avoid this

UW CSE 374 Fall 2017 4

The old story

•  We said a running Java or C program had code, a heap,
global variables, a stack, and “what is executing right
now” (in assembly, a program counter)

•  C, Java support parallelism similarly (other languages can
be different):
–  One pile of code, global variables, and heap.
–  Multiple “stack + program counter”s — called threads
–  Threads can be pre-empted whenever by a scheduler
–  Threads can communicate (or mess each other up) via

shared memory
•  Various synchronization mechanisms control what thread

interleavings are possible.
–  “Do not do your thing until I am done with my thing”

5 UW CSE 374 Fall 2017

Threads in C and Java

C: The POSIX Threads (pthreads) library
#include <pthread.h>

•  Link with –lpthread
•  pthread_create takes a function pointer and an

argument for it; runs it as a separate thread
•  Many types, functions, macros for threads, locks, etc.
Java: Built into the language
•  Subclass java.lang.Thread overriding run
•  Create a Thread object and call its start method
•  Any object can “be synchronized on” (later)

UW CSE 374 Fall 2017 6

Why do this?

•  Convenient structure of code
•  Example: two threads using information computed by the

other
•  Example: failure-isolation – each “transaction” in its own

thread so if a problem just “kill that transaction”
•  Example: Fairness – one slow computation only takes

some of the CPU time without your own complicated timer
code; Avoids starvation

•  Performance
•  Run other threads while one is reading/writing to disk or

network (or other slow thing that can happen in parallel)
•  Use more than one CPU at the same time

–  The way computers get faster these days
–  So no parallelism means no faster

UW CSE 374 Fall 2017 7

Simple synchronization

•  If one thread did nothing of interest to any other thread,
why is it running?

•  So threads have to communicate and coordinate
–  Use each others’ results; avoid messing up each

other’s computation
•  Simplest two ways not to mess each other up (don’t

underestimate!):
1. Do not access the same memory
2. Do not mutate shared memory

•  Next simplest: One thread does not run until/unless
another thread is done
–  Called a join

8 UW CSE 374 Fall 2017

Using parallel threads

A common pattern for expensive computations:
•  Split the work
•  Join on all the helper threads (i.e., wait until all done)
Called fork-join parallelism

To avoid bottlenecks, each thread should have about
the same amount of work (load-balancing)
•  Performance depends on number of CPUs available

and will typically be less than “perfect speedup”

9 UW CSE 374 Fall 2017

Less structure

•  Often you have a bunch of threads running at once
and they might need the same mutable (writable)
memory at the same time but probably not

•  Want to be correct without sacrificing parallelism
•  Example: A bunch of threads processing bank

transactions:
–  withdraw, deposit, transfer, currentBalance, ...
–  chance of two threads accessing the same

account at the same time very low, but not zero
–  want mutual exclusion (a way to keep each other

out of the way when there is contention)

10 UW CSE 374 Fall 2017

The issue

struct Acct { int balance; /* ... other fields ... */ };

int withdraw(struct Acct * a, int amt) {
 if(a->balance < amt) return 1; // 1==failure
 a->balance -= amt;
 return 0; // 0==success

}
•  This code is correct in a sequential program
•  It may have a race condition in a concurrent program,

allowing a negative balance
•  Discovering this bug is very hard with testing since

the interleaving has to be “just wrong”
11 UW CSE 374 Fall 2017

atomic

Program must indicate what must appear to happen all-at-once
int withdraw(struct Acct * a, int amt) {

 atomic {
 if(a->balance < amt) return 1; // 1==failure
 a->balance -= amt;
 }
 return 0; // 0==success

}
Reasons not to do “too much” in an atomic:
•  Correctness: If another thread needs an intermediate result to

compute something you need, must “expose” it
•  Performance: Parallel threads must access disjoint memory

–  Actually read/read conflicts can happen in parallel

12 UW CSE 374 Fall 2017

Getting it “just right”

•  This code is probably wrong because critical sections too
small:

atomic { if(a->balance < amt) return 1; }
atomic { a->balance -= amt; }

•  This code (skeleton) is probably wrong because the
critical section is too big:
–  Assume other thread does not compute until data is set

atomic {
 data_for_other_thread = 42; // set some global
 ans = wait_for_other_thread_to_compute();
 return ans;

}
13 UW CSE 374 Fall 2017

So far

•  Shared-memory concurrency where multiple threads
might access the same mutable data at the same time is
tricky
–  Must get size of critical sections just right

•  It’s worse because
–  atomic does not yet exist in languages like C and Java

•  Instead programmers must use locks (a.k.a. mutexes) or
other mechanisms, usually to get the behavior of critical
sections
–  But misuse of locks will violate the “all-at-once”

property
–  Or lead to other bugs we haven’t seen yet

14 UW CSE 374 Fall 2017

Lock basics

A lock is acquired and released by a thread
•  At most one thread “holds it” at any moment
•  Acquiring it “blocks” until the holder releases it and

the blocked thread acquires it
–  Many threads might be waiting; one will “win”
–  The lock-implementer avoids race conditions on

the lock-acquire
•  So to keep two things from happening at the same

time, surround them with the same lock-acquire/lock-
release

15 UW CSE 374 Fall 2017

Locks in C/Java

•  C: Need to initialize and destroy mutexes (a synonym
for locks)
–  The joys of C

•  An initialized (pointer to a) mutex can be locked or
unlocked via library function calls

•  Java: A synchronized statement is an acquire/
release
–  Any object can serve as a lock
–  Lock is released on any control-transfer out of the

block (return, break, exception, ...)
–  “Synchronized methods” just save keystrokes

UW CSE 374 Fall 2017 16

Choosing how to lock

•  Now we know what locks are (how to make them, what
acquiring/releasing means), but programming with them
correctly and efficiently is difficult...
–  As before, if critical sections are too small we have

races; if too big we may not communicate enough to
get our work done efficiently

–  But now, if two “synchronized blocks” grab different
locks, they can be interleaved even if they access the
same memory

•  A “data race”
–  Also, a lock-acquire blocks until a lock is available and

only the current-holder can release it
•  Can have “deadlock” ...

17 UW CSE 374 Fall 2017

Deadlock
 Object a;
 Object b;

void m1() { void m2() {

 synchronized a { synchronized b {
 synchronized b { synchronized a {

... ...
}} } }} }

•  A cycle of threads waiting on locks means none will ever run
again!

•  Avoidance: All code acquires locks in the same order (very hard
to do). Ad hoc: Don’t hold onto locks too long or while calling
into unknown code

•  Recovery: detect deadlocks, kill off and rerun one of the
processes (databases)

18 UW CSE 374 Fall 2017

Rules of thumb

•  Any one of the following are sufficient for avoiding races:
–  Keep data thread-local (an object is reachable, or at

least only accessed by, one thread)
–  Keep data read-only (do not assign to object fields after

an object’s constructor)
–  Use locks consistently (all accesses to an object are

made while holding a particular lock)
–  Use a partial-order to avoid deadlock (over-simple

example: do not hold multiple locks at once?)
•  These are tough invariants to get right, but that’s the price

of multithreaded programming today
•  But... one way to do all the above is to have “one lock for

all shared data” and that is inefficient...

19 UW CSE 374 Fall 2017

False sharing

•  “False sharing” refers to not allowing separate things
to happen in parallel. Example:

synchronized x { synchronized x {
 ++y; ++z;

} }
•  More realistic example: one lock for all bank accounts

rather than one for each account
•  On the other hand, acquiring/releasing locks is not so

cheap, so “locking more with the same lock” can
improve performance

•  This is the “locking granularity” question
–  Coarser vs. finer granularity

20 UW CSE 374 Fall 2017

What about this?

•  If each bank account has its own lock, how do you
write a “transfer” method such that no other thread
can see the “wrong total balance”?
// race (not data race) // potential deadlock
void xfer(int a,Acct other){ void xfer(int a,Acct other){

 synchronized(this) { synchronized(this) {
 balance += a; synchronized(other) {
 other.balance -= a; balance += a;
 } other.balance -= a;

} }}}

•  The problem is there is no relative order among
accounts, so “inverse transfers” could deadlock

21 UW CSE 374 Fall 2017

A final gotcha

•  You would naturally assume that all memory accesses
happen in “some consistent order” that is “determined by
the code”

•  Unfortunately, compilers and chips are often allowed to
cheat (reorder)! The assertion in the right thread may fail!

 initially flag==false
data = 42; while(!flag) { }
flag = true; assert(data==42);

•  To disallow reordering the programmer must:
–  Use lock acquires (no reordering across them), or
–  Declare flag to be volatile (for experts, not us)

22 UW CSE 374 Fall 2017

Conclusion

•  Threads make a lot of otherwise-correct approaches
incorrect
–  Writing “thread-safe” libraries can be excruciating
–  Use an expert implementation if you can, e.g.,

Java’s ConcurrentHashMap & others
•  But they are increasingly important for efficient use of

computing resources
•  Locks and shared-memory are (just) one common

approach

23 UW CSE 374 Fall 2017

