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News 

•  HW0 due tonight if you’re not already done 
–  Any lingering account/VM issues? 

•  HW1 out now, due Thursday night, 11 pm 
–  Linux commands, files, editing 

 
•  Please use discussion board, or mail to cse374-staff when 

email is needed; not mail to individual TAs/instructor 
–  Remember to post a followup message on the 

discussion board if you haven’t already 

•  Be sure to work with colleagues and help each other out 
(discussion board, study groups, etc.).  Just be sure not to 
trade actual hw solutions (see academic integrity policy) 
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Where we are 

•  It’s like we started over using the computer from scratch 
•  All we can do is run dinky programs at the command-line 
•  But we are learning a model (a system is files, processes, 

and users) and a powerful way to control it (the shell) 
•  If we get the model right, hopefully we can learn lots of 

details quickly 
•  Today: 

–  The rest of the model briefly: Processes and Users 
–  More programs (ps, chmod, kill, . . . ) 
–  Special shell characters (*, ~, . . . ) 
–  Text editing (particularly emacs) 
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Users 

•  There is one file-system, one operating system, one or 
more CPUs, and multiple users 

•  whoami 
•  ls -l and chmod (permissions), quota (limits) 

–  Make your homework unreadable by others! 
•  /etc/passwd (or equivalent) guides the login program: 

–  Correct username and (originally) password – actual 
encrypted password is elsewhere now for security 

–  Home directory 
–  Which shell to open (pass it the home directory) 
–  The shell then takes over, with startup scripts 

(e.g., .bash_profile, .bashrc). (ls -a) 
•  One “superuser” a.k.a. root. (Change passwords, halt 

machine, change system directories, add/remove user 
accounts, . . . ) 
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Programs & the Shell 

•  A program is a file that can be executed 
•  Almost all system commands are programs 
•  The shell is itself a program 

–  Reads lines you type in & carries them out 
–  Normally finds the named program and runs it 

•  A few commands are shell “built-ins” that the 
shell executes itself because they change the 
state of the shell.  Obvious example: cd 

–  After the named program runs it exits and the shell 
reads the next command 

–  More to this story to come… 
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Processes 

•  A running program is called a process. An application 
(e.g., emacs), may be running as 0, 1, or 57 processes at 
any time 

•  The shell runs a program by “launching a process” waiting 
for it to finish, and giving you your prompt back. 
–  What you want for ls, but not for emacs. 
–  &, jobs, fg, bg, kill — job control 
–  ps, top 

•  Each process has private memory and I/O streams 
•  A running shell is just a process that kills itself when 

interpreting the exit command 
•  (Apologies for aggressive vocabulary, but we’re stuck with 

it for now.) 
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Standard I/O streams 

•  Every process has 3 standard streams: stdin (input), 
stdout (output), stderr (error messages) 

•  Default is keyboard (stdin), terminal window (stdout, 
stderr) 

•  Default behavior is to read from stdin, write normal 
output to stdout, write diagnostic output to stderr 
–  Many programs accept command-line arguments 

naming files to read 
–  If not supplied, just read stdin 
–  Also ways to redirect stdin, stdout, stderr.  Later… 
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That’s most of a running system 

•  File-system, users, processes 
•  The operating system manages these 
•  Processes can do I/O, change files, launch other 

processes. 
•  Other things: Input/Output devices (monitor, 

keyboard, network) 
•  GUIs don’t change any of this, but they do hide it a bit 
•  Now: Back to the shell. . . 
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The shell so far 

•  So far, our view of the shell is the barest minimum: 
–  builtins affect subsequent interpretations 
–  New builtin: source 
–  Otherwise, the first “word” is a program run with 

the other “words” passed as arguments 
•  Programs interpret arguments arbitrarily, but 

conventions exist 
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Complicating the shell 

•  But you want (and bash has) so much more: 
–  Filename metacharacters 
–  Pipes and Redirections (redirecting I/O from and 

to files) 
–  Command-line editing and history access 
–  Shell and environment variables 
–  Programming constructs (ifs, loops, arrays, 

expressions, … ) 
•  All together, a very powerful feature set, but awfully 

inelegant 
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Filename metacharacters - globbing 

•  Much happens to a command-line to turn it into a “call 
program with arguments” (or “invoke builtin”) 

•  Certain characters can expand into (potentially) multiple 
filenames: 
–  ~foo – home directory of user foo 
–  ~ – current user’s home directory (same as ~$user or 

`whoami`). 
–  * (by itself) – all files in current directory 
–  * – match 0 or more filename characters 
–  ? – match 1 filename character 
–  [abc], [a-E], [^a], . . .more matching 

•  Remember, this is done by the shell before the program 
sees the resulting arguments 
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Filename metacharacters: why 

•  Manually, you use them all the time to save typing. 
•  In scripts, you use them for flexibility. Example: You 

do not know what files will be in a directory, but you 
can still do: cat * (though a better script would skip 
directories) 

•  But what if it’s not what you want? Use quoting ("*" or 
'*') or escaping (\*) 

•  The rules on what needs escaping where are very 
arcane 

•  A way to experiment: echo 
–  echo args. . . copies its arguments to standard 

output after expanding metacharacters 

12 UW CSE 374 Fall 2017 



History 

•  The history builtin 
•  The ! special character 

–  !!, !n, !abc, . . . 
–  Can add, substitute, etc. 

 
•  This is really for fast manual use; not so useful in 

scripts 
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Aliases 

•  Idea: Define a new command that expands to something 
else (not a full script) 

•  Shell builtin command: 
alias repeat=echo 
alias dir=ls 
alias hello="echo hello" 
alias rm="rm -i"                  % for cautious users 
alias                                   % list existing aliases 

•  Often put in a file read by source or in a startup file read 
automatically 

•  Example: your .bashrc – feel free to change 

14 UW CSE 374 Fall 2017 



Bash startup files 

•  Bash reads (sources) specific files when it starts up. Put 
commands here that you want to execute every time you 
run bash 

•  Which file gets read depends on whether bash is starting 
as a “login shell” or not 
–  Login shell: ~/.bash_profile (or others – see bash 

documentation) 
–  Non-login shell: ~/.bashrc (or others if not found) 

•  Suggestion: Include the following in your .bash_profile file 
so the commands in .bashrc will execute regardless of 
how the shell starts up 

 if [ -f ~/.bashrc ]; then source ~/.bashrc; fi 
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Where we are 

Features of the bash “language”: 
1.  builtins 
2.  program execution 
3.  filename expansion (Pocket Guide 23-25, 1st ed 

22-23) 
4.  history & aliases 

 
5.  command-line editing 
6.  shell and environment variables 
7.  programming constructs 

 But file editing is too useful to put off. . . so a detour to 
emacs (which shares some editing commands with bash) 
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What is emacs? 

•  A programmable, extensible text editor, with lots of 
goodies for programmers 

•  Not a full-blown IDE but much “heavier weight” than vi 
•  Top-6 commands: 

C-g 
C-x C-f 
C-x C-s, C-x C-w 
C-x C-c 
C-x b 
C-k, C-w, C-y, . . . 

•  Take the emacs tutorial to get the hang of the basics 
•  Everyone should know this at least a little – emacs editing 

shortcuts are common in other Linux programs 
•  Customizable with elisp (starting with your .emacs) 
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Command-line editing 

•  Lots of control-characters for moving around and 
editing the command-line. (Pocket Guide page 28, 
emacs-help, and Bash reference manual Sec. 8.4.) 

•  They make no sense in scripts 
•  Gotcha: C-s is a strange one (stops displaying output 

until C-q, but input does get executed) 
•  Good news: many of the control characters have the 

same meaning in emacs (and bash has a vi “mode” 
too) 
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vi(m) vs emacs 

•  You need to learn one of these 
–  Yes, there are many other editors out there, but you 

need to learn one of these – they are standard and 
available on all Unix/Linux systems (& emacs, at least, 
has versions for Windows, OS X) 

•  Emacs keyboard shortcuts work in many other programs 
and situations like bash 
–  Including vi(m) if you set the right mode! 
–  Learn them – it will make you more efficient 

•  We won’t try to dictate or settle the vi vs emacs wars 
–  You’re on your own for that! 
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Summary 

As promised, we are flying through this stuff! 
•  Your computing environment has files, processes, users, a 

shell, and programs (including emacs) 
•  Lots of small programs for files, permissions, manuals, etc. 
•  The shell has strange rules for interpreting command-lines. 

So far: 
–  Filename expansion 
–  History expansion 

•  The shell has lots of ways to customize/automate. So far: 
–  alias and source 
–  run (i.e., automatically source) .bash_profile or .bashrc 

when shell starts 
 
Next: I/O Redirection & stream details, Shell Programming 
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