CSE 374 Final Exam, 3/19/2015

Name:

Write your name in the space provided above. Without looking at the test contents, write
your initials on the top right corner of every sheet of paper.

Please wait to turn the page until everyone is told to begin.

While you are waiting, please read the following information:

There are 9 questions on 15 pages worth a total of 100 points. Please budget your time to get to
all the questions. Keep answers brief and to the point.

Some question pages may be detached for your convenience. A stapler is available at the
instructor podium if your entire exam falls apart.

The exam is closed book, closed notes, closed electronics, closed Internet, closed neighbor,
closed telepathy, etc.

Many of the questions have short solutions even if the question is somewhat long. Don’t be
alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s output,
make the best attempt you can. We will make allowances when grading. Write legibly.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Page 1 of 15

CSE 374 Final Exam, 3/19/2015

Score: /100
1 17

2 /9

3 /4

4. /14

5. /13

6. /20

7. /20

8 /12

9 /1

Page 2 of 15

CSE 374 Final Exam, 3/19/2015

Question 1. (7 points) (debugging) Consider a program with the following functions.

receive()
send()
checksum()
write_header()

Your program always has the following buggy behavior: after running for a few minutes, it
crashes with a segmentation fault.

Explain how you could use gdb (include commands) to discover in which function the crash

occurs. You cannot make any modifications to the program code, but you may recompile the
code as needed.

Page 3 of 15

CSE 374 Final Exam, 3/19/2015

Question 2. (9 points) (C preprocessor) The following program compiles and runs. What does it
print?

#tinclude <stdio.h>
#tdefine FAN 12
#tdefine DO_MATH(A, B) A+A+B

#if FAN > 10

#tdefine MYSTERY(x)
f#telse

#define MYSTERY(X) X
ftendif

int num

0;

int get_id() {
int r = num;
num += 1;
return r;

}

int main() {
MYSTERY(get_id());
int one = get_id();
int two = DO_MATH(get_id(), FAN);

printf(“%d\n”, one);
printf(“%d\n”, two);
}

Answer:

Question 3. (4 points) (gcc errors)

gcc -Wall -o talk main.c speak.c shout.c
(.text+0x20): undefined reference to " speak’
collect2: error: 1d returned 1 exit status

What is the most likely cause for this error? (circle one)

A) A source file referenced speak without making its declaration visible with #include
“speak.h”

B) The linker cannot find a definition for the function speak

C) Asource file #includes “speak.h” but we did not provide speak.h as an argument to gcc

D) the function speak was called using a reference instead of a pointer

E) The compiler cannot find the source file speak.c

Page 4 of 15

CSE 374 Final Exam, 3/19/2015

Question 4. (14 points) (Building C programs) Suppose you have the following C
implementation, C header, and text files.

list.h
- list.c
#ifndef LIST_H_ _
#define LIST H_ #include “list.h”
#endif
parser.c
input.txt #include “parser.h”
#include “grammar.h”
parser.h
_ engine.c
#ifndef PARSER H_ _
#define PARSER H_ #include “parser.h”
#include “list.h” int main() { .. }

#endif
These source files are to be used to build an executable program file named engine, whose
main function is in the source file engine.c.

The header file grammar.h is not written by the programmer, rather it is generated by the file
input.txt with the following command:

generate_grammar input.txt >grammar.h

This command should be re-run to rebuild grammar.h whenever changes are made to
input.txt.

Answer the question on the next page using the above information.

Page 5 of 15

CSE 374 Final Exam, 3/19/2015

Question 4 (cont). Write the contents of your Makefile for building the engine executable. You
must use gcc -c for compiling and gcc for linking. Your Makefile must be structured properly so
that a change to any input causes dependent targets to be rebuilt.

Page 6 of 15

CSE 374 Final Exam, 3/19/2015

Question 5. (13 points) (version control with git) This question has three parts (a), (b), ()

Alice makes two changes to the local copy of her project:
(i) created a new file called Makefile

(ii) made edits to foo.c

Then she runs the following command in her shell:

bash-$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes not staged for commit:
modified: foo.c
modified: baz.c

Untracked files:
Makefile
foo

a) Give the sequence of additional git commands to create one new commit that includes only
the two changes (i) and (ii) above.

In a different project, Carol makes a local commit changing the file gadget.c. Then she runs the
following command in her shell:

bash-$ git pull

Auto-merging gadget.c

CONFLICT (content): Merge conflict in gadget.c

Automatic merge failed; fix conflicts and then commit the result.

b) What was Carol trying to do by running that command? What has happened?

c) What does she need to do to resolve the problem? (be specific)

Page 7 of 15

CSE 374 Final Exam, 3/19/2015

Question 6. (20 points) (T9) Consider the data structure for the T9 trie.

typedef struct Node { /* T9 trie node */

char* word; /* word associated with this node or NULL if no word
stored here */
Node* next[9]; /* Pointers to subtrees of this T9 node.

* Pointers to empty subtrees are NULL. */
} Node;

Your colleague wrote a new function remove_word, which removes a word from the trie.
Unfortunately you notice that it is leaving “blank” Nodes in the trie instead of completely
removing them.

A “blank” Node is defined as a Node that stores no word and that has only empty subtrees.

Your boss won't let you fix remove_word, so you must write a new function called
remove_blank_nodes, which removes all blank nodes from a trie. Your solution must not
cause memory leaks.

Hint: recursion

You should assume that any necessary standard library headers are already #included and
you do not need to write any #includes.

You may define additional helper functions if needed as part of your solution. The next page
contains the prototype for remove_blank_nodes.

Page 8 of 15

CSE 374 Final Exam, 3/19/2015
Question 6 (cont). Complete the following function.

/* Remove all empty Nodes from the trie rooted at r. */
int remove blank nodes(struct Node* r) {

Page 9 of 15

CSE 374 Final Exam, 3/19/2015

Page 10 of 15

CSE 374 Final Exam, 3/19/2015

Question 7. (20 points) (memory manager) Implementing a check_1ist function.

In the memory manager assignment, the freemem function had to search the free list for the
proper location to add a returned block to the list and possibly merge it with other free blocks. A
different way to handle this is known as the boundary-tag method. Here, in addition to the
header at the front of every block, there is additional information in a footer following each block.

The footer contains a pointer back to the beginning of the block and a 1/0 (true/false) value
indicating whether the block is currently allocated. Here are definitions for the header and footer
structs that surround each block:

struct header { // block header:
uintptr_t size; // number of data bytes in the block
// not including the header/footer
struct header* next; // next block on the free list or NULL

}s

struct footer { // block footer:
struct header* hdr; // address of header for this block
uintptr_t allocated; // 1 if block allocated, © if free

}s

Here is an illustration of a free block with 160 bytes of user storage whose header is at location
10000 (base 10) and is followed in the freelist by a block at address 10512. The block plus
header and footer occupy 160+16+16 = 192 bytes.

10000 +-------- F-------- +
|size: 160 | header
|next: 10512 |

10016 +-------- +-------- +

160 bytes of
user storage

10176 +-------- +-------- +
| hdr: 10000 | footer
| allocated: © |

10192 +-------- +-------- +

A common class of bugs in the implementation of getmem/freemem is for the header or footer to
become corrupted. To check for such bugs, your job is to write a check_1ist function for the

freelist. This function should check the following properties for every block in the freelist,
using assert:

- the block does not overlap the next block (you may assume the blocks are sorted by
increasing address)
- the hdr field of the footer is correct

- the allocated field of the footer is correct

Page 11 of 15

CSE 374 Final Exam, 3/19/2015

Question 7 (cont).

Hint: assert works like this:
// Stops the program with an assertion error if predicate==0,

// and otherwise just returns
void assert(int predicate);

Complete the function below.

/* Stops the program with an assertion error if there are overlapping blocks
* or a footer field is invalid */
void check_list(struct header* freelist) {

Page 12 of 15

CSE 374 Final Exam, 3/19/2015

Page 13 of 15

CSE 374 Final Exam, 3/19/2015

Question 8. (12 points) (C++ inheritance) The following program prints howle rorwl. Add the
keyword virtual in appropriate places so that the program will print hello world instead. You

may not make any other changes to the code.

#include <iostream>
using namespace std;

class A {
public:
void
void
void
}s
class B :
public:
void
void
void
}s
class C :
public:
void
void
void
}s
int main()
A* ab =
B* b
B* bc
A* ac

ac->m2();
ab->mi();
ab->m3();
b->m3();

bc->m1();
cout << "
bc->m2();
ac->ml1();
b->m2();

ab->m3();
bc->m3();

mi() {
m2() {
m3() {

public A {

mi() {
m2() {
m3() {

public B {

mi() {
m2() {
m3() {

{

new B();
new B();
new cO);
new cQ);

cout << endl;

cout
cout
cout

cout
cout
cout

<<
<<
<<

<<
<<
<<

cout <«
cout <<
cout << "d";

llhll;

llell;

res
lllll;

lloll;

W5

e e

e

Page 14 of 15

CSE 374 Final Exam, 3/19/2015

Question 9. (1 point) (art)
Draw what engineering means to you. For practical purposes, credit requires at least one

visible mark, as we cannot distinguish the unsparing use of whitespace from a blank answer (we
apologize for the creative constraints).

Page 15 of 15

